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Abstract—The ability to obtain the steady-state probability
distribution of a Markov chain is invaluable for modern service
providers who aim to satisfy arbitrary tail performance require-
ments. However, it is often challenging, and even intractable,
to obtain the steady-state distribution for several classes of
Markov chains, such as multi-dimensional and infinite state-space
Markov chains with state-dependent transitions; two popular
examples include the M/M/1 with Discriminatory Processor
Sharing (DPS) and the preemptive M/M/c with multiple priority
classes and customer abandonment. In this paper, we propose
a Lyapunov function based state-space truncation technique
for such Markov chains. Our technique leverages the available
moments, or bounds on moments, of the state variables of the
Markov chain to obtain tight truncation bounds while satisfying
arbitrary probability mass guarantees for the truncated chain.
We demonstrate the efficacy of our technique for the multi-
dimensional DPS and M/M/c priority queue with abandonment,
and highlight the significant reduction in state space (as much as
72%) afforded by our technique compared to the state-of-the-art.
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I. INTRODUCTION

Continuous-Time Markov chains (CTMCs) are widely used
to model and analyze networked systems, such as processor-
sharing (PS) systems and priority queue systems. A common
approach to study the performance of these systems is to
obtain the steady-state probability distribution of an underlying
CTMC model. For example, to obtain tail measures (e.g., the
tail queue length), which are the performance metric of choice
for modern service operators such as those at Google [1] and
Amazon [2], it is often necessary to first obtain the steady-
state probability distribution by solving the balance equations
governing the state transitions of a CTMC model.

Obtaining the exact steady-state probability distribution is
not always practical or even possible. For many applications,
the state space of the CTMC is infinite and multi-dimensional;
exact analysis of such models is challenging. For CTMCs
with specific structures, efficient numerical techniques exist
for obtaining the exact steady-state distribution. For example,
Matrix Analytic Methods are known to be efficient for solving
CTMCs with a repeating pattern of transitions between adja-
cent states, including quasi-birth-and-death processes (QBDs,
which are infinite state space multi-dimensional CTMCs in

which states are organized into levels and transitions are skip-
free between the levels) [3].

For chains with more general transitions, obtaining the exact
steady-state probability distribution can be more challenging.
For example, finding the distribution of the number of jobs
in the system in the Discriminatory Processor Sharing (DPS)
model (first introduced by Kleinrock in 1967 [4] and one of
the models that we analyze in this paper) is still an open
challenge. Likewise, obtaining the exact steady-state prob-
ability distributions of level-dependent QBDs (LDQBDs) is
typically impossible [5, 6]. In fact, computing the steady-state
probability distribution even for CTMCs with a finite but large
state space can be computationally prohibitive [7]. For such
chains, we instead resort to obtaining accurate approximations
of the steady-state probability distribution.

An approach to approximate the steady-state probability
distribution of multi-dimensional infinite CTMCs with general
state transitions is to truncate their state space, in one or more
dimensions, and then solve for the steady-state probability dis-
tribution of the truncated CTMC using existing analytical or
numerical methods. Truncation algorithms have been proposed
in the literature to carefully obtain truncation bounds such that
the steady-state probability distribution of the truncated CTMC
closely approximates that of the original infinite CTMC.
For example, algorithms based on Lyapunov functions (see
Section II) guarantee to provide truncation bounds that satisfy
a desired accuracy with respect to the probability mass covered
by the truncated chain [8]. In particular, if the maximum
acceptable error due to truncation is 0 < ϵ < 1, the probability
mass (or, sum of steady-state probabilities) of the states of the
original (infinite) chain residing within the truncation bounds
is guaranteed to be at least (1 − ϵ). An issue with such
truncation techniques, as acknowledged by prior work [8],
is that they lead to loose truncation bounds, which results
in unnecessarily large truncated CTMCs and consequently,
expensive time and computational effort to analyze them.

In this paper, we leverage available information about the
moments (or bounds on moments) of the state variables of a
CTMC to derive tighter truncation bounds while ensuring that
these bounds satisfy the required probability mass guarantees.
By leveraging the moments and using concepts from proba-
bility theory, specifically the Paley-Zygmund inequality [9],

1



we scale the drift of the Lyapunov function (the expected
rate of change in its value) more efficiently to obtain much
tighter truncation bounds without increasing the computational
complexity, compared to the existing truncation techniques
that are based on Lyapunov functions [8].

The design of our technique ensures that the resulted trunca-
tion bounds are, in theory, at least as tight as those obtained by
the state-of-the-art. In practice, the truncation bounds obtained
by our technique are significantly tighter than those obtained
by existing techniques, allowing us to speed up the solving
of the truncated CTMC (via solving of the relevant balance
equations) by as much as 7× when compared to the state-of-
the-art.

We demonstrate the effectiveness of our proposed trun-
cation technique by computing the steady-state probability
distribution of the M/M/1-DPS system, which is a multi-class
extension of the classic processor sharing system where the
server capacity can be unequally shared, via user-specified
weights, among different job or customer classes. The M/M/1-
DPS system is known to be a “class of models notoriously
hard to analyze in an exact manner” [10]. To the best of our
knowledge, there has been no prior work on the approximation
of the steady-state probability distribution of the DPS system
with truncation error guarantee. We analyze the K-class DPS
system (whose CTMC is K-dimensional) using our truncation
technique leveraging the known moments of the queue-length
distribution of the DPS system [11]. Across different param-
eter settings for K = 2, 3, 4 customer classes, we show that
our technique achieves on average 34%, and up to 72%, tighter
truncation bounds compared to those obtained when applying
the state-of-the-art for the same desired accuracy.

We also apply our truncation technique to the M/M/c+M
model (an M/M/c queue with exponential abandonment) with
multiple priority classes and preemptive service policy, as
an example of another system where our technique can be
applied to obtain tighter truncation bounds. We show that our
technique can reduce the size of the truncated state space by as
much as 42%, while providing the same accuracy as the state-
of-the-art. Interestingly, for the priority model, our truncation
technique only requires the moments of the higher priority
jobs, which are readily available [12].

We numerically validate the accuracy of our truncation
technique, where possible. For example, the M/M/1-DPS with
equal weights for customer classes reduces to the well-studied
M/M/1-PS system. Likewise, the marginal distribution of the
higher priority jobs under the M/M/c+M queue with preemp-
tive priority reduces to the distribution of jobs in the standard
M/M/c, which is known as the Erlang-A model. Across all
validations, the maximum difference in per-state probability
between our truncated CTMC and the original CTMC is about
3× 10−6% for the DPS system and about 9× 10−4% for the
M/M/c+M queue with preemptive priority.

Finally, by leveraging our truncation technique, we conduct
several performance analyses that are otherwise intractable,
such as determining when the DPS system outperforms the
PS system (and vice-versa) in terms of the tail of number

of jobs in system, or comparing the tail performance of the
M/M/1-FCFS system with that of the M/M/1-DPS system.
Such performance analyses are crucial for designing customer-
facing web applications that must meet strict tail performance
targets [1, 2].

The rest of the paper is organized as follows. We discuss
the background and related work, including the state-of-the-
art, in Section II. We present our truncation technique in
Section III, and apply it to obtain the steady-state probability
distribution of the DPS system and the preemptive priority
queue in Sections IV and V, respectively; we also present
several use cases to demonstrate the performance analyses
enabled by our truncation technique. We conclude this paper
in Section VI.

II. BACKGROUND AND PRIOR WORK

In this section, we first provide the necessary background
and prior work on the two main approaches for state space
reduction of infinite CTMCs, namely, state space aggregation
and truncation. We then describe the state-of-the-art truncation
technique of Dayar et al. [8]. When evaluating the efficiency
of our technique in later sections, we primarily compare our
truncation bounds with those obtained via Dayar et al.

A. State space reduction

When a CTMC with an infinite state space cannot be solved
exactly, a natural alternative is to find an approximate solution
by reducing the size of the state space. Prior research in
this area has primarily focused on two key techniques: (i)
state space aggregation (Section II-A1) and (ii) state space
truncation (Section II-A2).

1) State space aggregation: The high-level idea in aggre-
gation is to replace a subset of the state space of a CTMC
with a single state. Courtois and Semal [13] present a bounded
aggregation technique to find lower and upper bounds on the
approximation error for individual state probabilities when the
state space is large but finite. This technique approximates the
transition rate matrix of a Markov chain, which is positive
irreducible, using a block diagonal matrix. The eigenvectors
of the blocks are then used to approximate the eigenvector of
the original matrix.

The above work has been extended to analyze the avail-
ability of computer systems prone to failures [7, 14]. Muntz
et al. [7] propose an aggregation technique motivated by
the fact that for some Markov chains the majority of the
probability mass is concentrated in a small subset of the state
space. The authors thus aggregate the remaining states to
obtain an accurate approximation and then derive a bound on
the error resulting from this aggregation. Lui and Muntz [14]
build on this approach and introduce an iterative algorithm
that tightens the error bound.

Mahevas and Rubino [15] present a method to find bounds
on various performance measures for complex computer sys-
tems by assuming that a partitioning of the state space into
a small and a large subset is available. The large subset is
aggregated into an auxiliary Markov chain with aggregated
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transition rates. The authors then find lower and upper bounds
on the steady-state performance measures of this new, reduced
representation of the Markov chain.

Riska and Smirni [16] introduce a methodology to find
the exact steady-state measures for M/G/1-type processes by
aggregating the probability of finite subsets of the state space,
which in turn is used to find the steady-state measures of
various Markov reward functions. Buchholz [17] proposes
an approach to find bounds on the steady-state performance
measures by solving a finite subset of the original Markov
chain exactly and aggregating the rest of the state space.
However, this approach is only applicable to models that are
overtake free, i.e., models for which the customers leave the
system in the same order as they arrive.

A limitation of the above approaches (Lui and Muntz [14],
Mahevas and Rubino [15], and Muntz et al. [7]) is the
assumption that the state space can be decomposed by the
user into two disjoint sets, with one set containing the states
frequently visited by the system in steady state. Further,
these approaches either help find the performance measures
(Riska and Smirni [16]) or provide bounds on the performance
measures (Buchholz [17], Lui and Muntz [14], Mahevas and
Rubino [15], and Muntz et al. [7]) for Markov chains with
infinite state space, but do not find bounds on the steady-state
distribution. Thus, guarantees on the probability mass after
aggregation cannot be immediately obtained.

2) State space truncation: A more popular approach for
state space reduction is truncation, whereby the state space of
a Markov chain is truncated along one or more dimensions.
However, ad-hoc truncation can result in inaccurate approxi-
mations whereby the steady-state probability distribution and
the associated performance measures (such as the mean queue
length) of the truncated Markov chain are far from those of
the original one.

There has been prior work on truncation techniques that
provide some upper bound on the loss of accuracy due to
truncation. Such techniques typically leverage the specific
structure of the underlying CTMC to obtain an accurate
truncation. Bright and Taylor [18] propose a numerical method
to solve LDQBDs which involves iteratively finding a suffi-
ciently large truncation level. However, the iterative method is
computationally intensive, and, more concernedly, the authors
explicitly state that the proposed method is not guaranteed to
provide accurate results.

Lyapunov analysis has been often used in prior works to
find bounds on the moments and tail probabilities for both
discrete- and continuous-time Markov chains. Bertsimas et al.
demonstrate how lower and upper bounds on the moments
and tail probabilities of a discrete-time Markov chain can be
obtained provided that a suitable Lyapunov function can be
found [19]. One of the conditions on the Lyapunov function
is a finite “jump size,” i.e., the requirement that the maximum
change in the value of the drift function is bounded. Maguluri
and Srikant build on prior works [19, 21] to find an upper
bound on tail probabilities of CTMCs [20]. However, their
approach requires the drift of the Lyapunov function to have a

finite lower and upper bound, thus restricting the applicability
of the approach given the difficulty of finding Lyapunov
functions even without these additional constraints [8, 22]. By
contrast, our technique does not impose any requirements on
the Lyapunov function. In fact, for the Lyapunov functions
we employ throughout this paper, the drift is unbounded from
below.

B. State-of-the-art in CTMC truncation

The state-of-the-art in terms of truncation methods is the
work of Dayar et al. from 2011 [8]. Dayar et al. is based
on leveraging Lyapunov functions to obtain truncation bounds
with probability mass guarantees for LDQBDs. The central
idea is to identify a subset of states towards which the CTMC
drifts, and then truncate the infinite state space to ensure that
this subset is part of the truncated CTMC. Our truncation
technique builds on this work, and so we provide an overview
of Dayar et al. below.

Let {N(t), t ≥ 0} be an ergodic k-dimensional CTMC with
state space S and generic state n = (n1, n2, . . . , nk). Let Ni

denote the random variable corresponding to ni, with N(t) =
(N1(t), . . . , Nk(t)). Let π(n) = π(n1, n2, ..., nk) denote the
steady-state probability of being in state n, and let Q denote
the infinitesimal generator matrix. Without loss of generality,
assume that the CTMC is infinite in the first m-dimensions
and finite in the remaining (k −m) dimensions.

The stability of a Markov chain can be established if a
Lyapunov function that maps the state space to positive real
numbers is found such that its drift (the expected rate of
change in the value of the Lyapunov function in a state)
is negative outside a finite subset of the state space and is
bounded in this finite subset; such a finite subset is referred
to as the attractor set, C. Formally, if N(t) is ergodic, there
exists a Lyapunov function g : S → R≥0 and a set C ⊂ S
such that the following conditions hold for some γ > 0 [8]:

(i) d(n) ≤ −γ, ∀n ∈ C, where C = S \ C,
(ii) d(n) < ∞, ∀n ∈ C, and

(iii) {n ∈ S | g(n) ≤ r} is finite, ∀r < ∞,
where d(n) denotes the value of the drift function in state n:

d(n) = (d/dt) E[g(N(t)) | N(t) = n], (1)

where E[X] denotes the expectation of X . Dayar et al. use the
above conditions to derive an upper bound on the probability
mass (sum of steady-state probabilities of all states) in C.
The authors define a function g∗(n) = g(n)/(c+ γ), where
c = supn∈S d(n) (note that c is finite from condition (ii)) and
γ is as defined in condition (i). Figure 1 illustrates the above
concepts pictorially, where the x-axis and y-axis correspond
to the state variable and the value of the drift function,
respectively. The parameter γ that partitions the state space
into the attractor set and its complement is also shown in the
figure. All the states whose value of the drift function is above
the line corresponding to −γ can be grouped into an attractor
set.
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Fig. 1: Illustration of the drift (d(ni)), the supremum of the
drift (c), the parameter γ, and our state-dependent drift bounds
(f1(ni) and f2(ni)).

Using conditions (i)–(iii), the authors derive an upper bound
on the probability mass outside the attractor set C, thereby
providing a lower bound on the probability mass inside C.
Conditions (i) and (ii) and the fact that c = supn∈S d(n) yield:

d∗(n) =
d(n)

c+ γ
≤ c

c+ γ
, ∀n ∈ C, (2)

d∗(n) ≤ − γ

c+ γ
, ∀n ∈ C. (3)

Combining Eqs. (2) and (3) gives:

d∗(n) ≤ c

c+ γ
− IC , (4)

where IC = 1 if n ∈ C and 0 otherwise. If d, g, and π are
the vectors of drift function values, Lyapunov function values,
and steady-state probabilities for all states, respectively, by the
definition of drift in Eq. (1) and the fact that πQ = 0 [23],
we have:

dT = QgT =⇒ πdT = πQgT = 0 =⇒ πd∗T = πQg∗T = 0.
(5)

Using Eqs. (4) and (5), a bound on the probability mass in C
is obtained as follows:

0 =
∑
n∈S

d∗(n) · π(n) ≤
∑
n∈S

π(n) · c

c+ γ
−

∑
n∈C

π(n)

=⇒
∑
n∈C

π(n) ≤
∑
n∈S

π(n) · c

c+ γ
=

c

c+ γ
. (6)

This guarantees that the probability mass in C is at least
1 − c/(c+ γ). Hence, the value of γ obtained by solv-
ing c/(c+ γ) = ϵ, where 0 < ϵ < 1, guarantees that a
truncated CTMC containing C has at least (1 − ϵ) fraction
of the probability mass, and thus loses at most ϵ fraction of
the probability mass after truncation. Once γ is found, the set
C can be found as follows:

C = {n ∈ S | d(n) > −γ}. (7)

Omitting the states outside the attractor set C truncates the
CTMC from “below” and from “above.” For example, for
a k-dimensional CTMC with positive state variables (i.e.,
ni ≥ 0 for i = 1, 2, . . . , k), C might only contain states
n = (n1, n2, . . . , nk) such that 10 ≤ ni ≤ 100 for state
variable Ni.

Note that Eq. (6) only provides an upper bound on the
probability mass in C; the actual probability mass in C could

be much smaller than c/(c+ γ), as Dayar et al. acknowledge
in their work [8]. Indeed, our experiments in Section IV show
that the truncation bounds obtained via the above technique
are quite loose. The goal of our work is to address this issue
and provide tighter truncation bounds.

III. OUR TRUNCATION TECHNIQUE

This section presents our truncation technique. We start
with an overview of our technique in Section III-A. We
provide specific truncation bounds to obtain probability mass
guarantees by leveraging the state variable moments (or their
bounds) of the Markov chain along one or multiple dimensions
in Sections III-B and III-C. For reference, we illustrate in
Appendix A the step-by-step algorithm of our truncation
technique with application to the priority queue (the system
that we will investigate in Section V).

A. Overview of the technique

Figure 1 illustrates the high-level idea of our state space
truncation technique for the Discriminatory Processor Sharing
(DPS) system that we analyze later in Section IV. The solid
black line is the drift as a function of the state variable, d(ni).
The state-of-the-art obtains truncation bounds by bounding the
drift function with the trivial upper bound of c = supn∈S d(n)
(the dashed black line). The advantage of using the supremum
is that the bound on

∑
n∈C π(n) in Eq. (6) can be easily

obtained as
∑

n∈S π(n)·c/(c+γ) = c/(c+γ). However, there
is clearly a gap between the drift and the supremum, which
tends to grow larger for higher values of ni, as highlighted
in Figure 1. The drift is a state-dependent function, but the
supremum is a fixed function that does not adapt to changes
in the state variate, thus making it a loose upper bound of the
drift.

The key idea in our technique is to employ a state-dependent
bounding function that mimics, to some extent, the changes in
the drift function in response to the state variable to provide
tighter upper bounds of the drift function; examples of such
state-dependent bounding functions include a step function and
a decaying function (e.g., f1(ni) and f2(ni) in Figure 1).
However, when using a generic state-dependent bounding
function, f(n), in place of c in Eq. (6), the upper bound on the
probability mass in C may not be easily obtained in closed-
form, making it difficult to solve for the set C. We formalize
this challenge below.

Generic bounding functions: Consider a generic state-
dependent bounding function f(n) that bounds the drift d(n),
i.e., f(n) ≥ max(d(n), 0), ∀n ∈ S. Expanding Eq. (5) gives
us:

0 =
∑
n∈S

π(n) · d(n) =
∑
n∈C

π(n) · d(n) +
∑
n∈C

π(n) · d(n)

=⇒ 0 ≤
∑
n∈C

π(n) · d(n)− γ
∑
n∈C

π(n) ∵ d(n) ≤ −γ ∀n ∈ C

=⇒
∑
n∈C

π(n) ≤
∑

n∈C π(n) · f(n)
γ

∵ f(n) ≥ max(d(n), 0).

(8)
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The truncated CTMC consisting of the set C can now be
obtained by setting the right-hand-side of Eq. (8) to ϵ, solving
for γ, and then using Eq. (7). However, this requires knowing
the exact value or an upper bound of the term

∑
n∈C π(n) ·

f(n). We show, in subsections III-B and III-C, examples of
one-dimensional and two-dimensional generic bounding func-
tions f(n) that result in simple expressions for

∑
n∈C π(n) ·

f(n). In all the cases, the final expressions are in terms of the
moments of the state variables.

Reliance on the CTMC moments: We acknowledge the
reliance of our technique on the knowledge of the moments of
the original CTMC’s state variables. However, our technique
can also be applied to CTMCs for which a lower bound on
the moments is known. In general, knowing the moments is
not enough to obtain the steady-state probability distribution;
the DPS system is an example of a CTMC for which the
moments of the number of jobs are known [11], but its exact
steady-state distribution is as yet unknown. The preemptive
M/M/c priority queue with abandonment is another CTMC
for which some of the moments are known (e.g., for the
highest priority jobs, since they constitute the classic M/M/c
queue), but obtaining the steady-state probability distribution
is computationally prohibitive, especially for c > 2 [24, 25].

The steady-state probability distribution of a CTMC can
be invaluable to practitioners. When designing performant
computing systems, it is not enough to simply focus on
the expected value of the performance metric [1, 26]. For
modern customer-facing online services, e.g., Amazon and
Google, performance metrics typically take the form of tail
probabilities [2, 27], thus requiring the steady-state probability
distribution. In fact, to achieve predictably good performance,
it is necessary to know the entire distribution of the perfor-
mance metrics (e.g., the queue size distribution) [28].

B. Truncation bounds based on the moments

We now employ a specific function, a simple step function,
along one of the dimensions of a CTMC to bound its drift
function. Consider a 1-D step function (depicted in Figure 1
as f1(n)) that initially is equal to the supremum and then drops
to a lower value, c1, along one dimension of the state space,
resulting in a tighter bounding of the drift for larger values
of the state variate. Note that the step function subsumes the
supremum function used by Dayar et al. [8].

Consider a k-dimensional CTMC with state space S with
a generic state denoted by n = (n1, n2, . . . , nk), and let the
CTMC be infinite in m-dimensions and finite in the remaining
(k−m) dimensions. We denote with Nj the random variable
corresponding to the jth dimension of the state space, nj . We
improve the upper bound of the drift along an arbitrary infinite
dimension, say dimension i, corresponding to Ni. We formally
define the step function, which drops to c1 ≤ c for R = {n |
ni > n}, where n is a parameter, as:

f1(n) =

{
c = sup∀n∈S d(n), ∀n ∈ R,

c1 = sup∀n∈R d(n), ∀n ∈ R
(9)

Substituting f1(n) in place of f(n) in Eq. (8) and rearranging
the terms gives us:

γ
∑
n∈C

π(n) ≤ c
∑

n∈C∩R

π(n) + c1
∑

n∈C∩R

π(n)

= c
∑
n∈R

π(n) + c1
∑
n∈R

π(n)− c
∑

n∈C∩R

π(n)− c1
∑

n∈C∩R

π(n)

≤ c
∑
n∈R

π(n) + c1
∑
n∈R

π(n)− c1
∑
n∈C

π(n) ∵ −c ≤ −c1

=⇒
∑
n∈C

π(n) ≤ c

c1 + γ

∑
n∈R

π(n) +
c1

c1 + γ

∑
n∈R

π(n)

=
c

c1 + γ
− c− c1

c1 + γ

∑
n∈R

π(n) (10)

Recall from Section II-B that C is the set of states outside
the attractor set. Thus,

∑
n∈C π(n) represents the probability

mass outside the attractor set. To obtain the probability mass
guarantee on

∑
n∈C π(n), we require a lower bound on the tail

probability,
∑

n∈R π(n). While any applicable lower bound
can be employed, we leverage a generic lower bound.

Definition 1: Paley-Zygmund inequality [9]: For a positive
random variable X with finite variance and 0 ≤ θ ≤ 1,
Pr(X > θE[X]) ≥ (1− θ)2E[X]2/E[X2].

Applying the Paley-Zygmund inequality for Ni and setting
n = θE[Ni], we have, from Eq. (10):∑

n∈C

π(n) ≤ c

c1 + γ
− c− c1

c1 + γ
(1− θ)

2 E[Ni]
2

E[N2
i ]

. (11)

The above upper bound on the probability mass in C (or
the lower bound on the probability mass inside C) results
in a tighter truncation bound compared to Dayar et al. when
ϵ ≤ E[Ni]

2

E[N2
i ]

. In fact, we can state the following lemma (proof
deferred to Appendix B):

Lemma 1: The truncation obtained via our 1-D step bound-
ing function (given in Eq. (9)) is at least as tight as that
obtained via the supremum bounding function, as employed in
Dayar et al., when ϵ ≤ E[Ni]

2

E[N2
i ]

, where i is an arbitrary infinite
dimension of the CTMC.
The upper bound on the probability mass in C given in
Eq. (11) depends on the first and second moments of the
marginal distribution of Ni. We apply this upper bound in
Sections IV and V to the DPS and M/M/c+M with priority
models, respectively, for which such moments are readily
available.

C. Tighter truncation bounds using joint moments of state
variables

In general, since the drift function is defined on the state
space of the CTMC, it can be multi-variate (the illustration
of drift in Figure 1 appears one-dimensional as it has been
projected onto a single dimension). By bounding the drift in
one dimension, it is likely that we obtain loose truncation
bounds. To obtain tighter truncation bounds, we now con-
sider multi-dimensional bounding functions. In such cases,
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Fig. 2(a): Illustration of a 2-D drift bounding function.
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Fig. 2(b): Illustration of different subsets of the state
space. The axes ni and nj are the two arbitrary di-
mensions along which the chain is being truncated.
The shaded square corresponds to the set R = {n ∈
S | max{ni, nj} ≤ n} and the region bounded by
the orange line and the axes corresponds to the set
T = {n ∈ S | ni + nj ≤ 2 · n}.

the joint moments of the state variables may be needed to
obtain the truncation bounds. For simplicity, we consider
two-dimensional bounding functions; however, our proposed
technique can be extended to higher-dimensional functions.

1) Bounding the drift using a 2-D step function: Figure 2a
plots a two-dimensional step function that bounds the drift;
here, we assume that the CTMC is k-dimensional, k > 1, but
we only show the bounding function for the two dimensions,
say i and j, along which it takes a step. Mathematically, we
define the 2-D step function as:

f12(n) =

{
c = sup∀n∈S d(n), ∀n ∈ R,

c1 = sup∀n∈R d(n), ∀n ∈ R,
(12)

where R = {n ∈ S | max{ni, nj} ≤ n} and R = S\R. Thus,
the bounding function takes the value c in the “square” region
(if projected onto two dimensions) defined by ni ≤ n and
nj ≤ n, and takes the value c1 outside this region. Substituting
Eq. (12) in the generic upper bound on the probability mass
in C (Eq. (8)) gives us a result similar to Eq. (10):

∑
n∈C

π(n) ≤ c

c1 + γ
− c− c1

c1 + γ

∑
ni∈R

π(n) (13)

To obtain a lower bound on the probability mass in R, we
define the new set T = {n ∈ S | ni + nj ≤ 2 · n} and T =
S \ T . Let π(S) denote

∑
n∈S π(n). Since T ⊂ R, we have

π(R) ≥ π(T ). Figure 2b illustrates the different regions of the
state space S. We now use the Paley-Zygmund inequality to
find the lower bound on π(T ) by considering Z = Ni +Nj :

P (Z > θE[Z]) ≥ (1− θ)2
E[Z]2

E[Z2]
, with 2n = θE[Z]

=⇒ π(R) ≥ π(T ) = P (Z > θE[Z]) ≥ (1− θ)2
E[Z]2

E[Z2]
.

(14)

Finally, substituting Eq. (14) in Eq. (13) gives us our upper
bound on the probability mass in C as:∑

n∈C

π(n) ≤ c

c1 + γ
− c− c1

c1 + γ
(1− θ)2

E[Z]2

E[Z2]
(15)

The above bound is provably tighter compared to the state-of-
the-art (proof deferred to Appendix B) when ϵ ≤ E[Z]2

E[Z2] :
Lemma 2: The truncation obtained via the 2-D step bound-

ing function (given in Eq. (12)) is at least as tight as that
obtained via the supremum bounding function, as employed
in Dayar et al., when ϵ ≤ E[Z]2

E[Z2] where Z = Ni +Nj and Ni

and Nj represent state variables corresponding to two arbitrary
infinite dimensions of the CTMC.

2) Alternative approaches for obtaining the truncation
bound for the 2-D step function: In the above, we obtained
a lower bound on π(R) via the lower bound on π(T ), where
T = {n ∈ S | ni + nj > 2n}. Alternatively, we considered
the sets {n ∈ S | n2

i + n2
j > 2n2} and {n ∈ S | ninj > n2}

(in place of T ). However, the higher order terms involved in
the definition of these sets necessitated higher order moments
in the Paley-Zygmund inequality, thereby resulting in a looser
lower bound on π(R).

We also considered using the fact that π(R) = π(Ni >
n) + π(Nj > n) − π(min{Ni, Nj} > n). We again used the
Paley-Zygmund inequality to obtain lower bounds on the first
two terms and the two-variable Markov’s inequality [29] to
obtain an upper bound on the third term. However, the obtained
truncation bounds for the DPS system, which we evaluate in
Section IV, were not as tight as those derived from Eq. (15).
Nonetheless, the above alternatives could be useful for other
CTMCs; for example, if the problem at hand has a tighter
upper bound on π(min{Ni, Nj} > n), the truncation bounds
could be tighter than those obtained via Eq. (15).

IV. APPLYING OUR TRUNCATION TECHNIQUE TO THE DPS
SYSTEM

We now evaluate the efficacy of our truncation technique
by applying the truncation bounds for the Discriminatory
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Fig. 3: M/M/1-DPS with two customer classes; for state
(n1, n2), n1 and n2 are the number of class-1 and class-2
jobs, respectively.

Processor Sharing (DPS) system. We first consider the DPS
system with two customer classes, for ease of exposition.
However, our technique is not restricted to 2-dimensional
CTMCs; we also apply our truncation technique to the DPS
system with three and four customer classes in Section IV-B.
We investigate the tightness of the drift bounding functions
presented in Section III, and compare the resulting truncation
bounds with those obtained from Dayar et al. [8]. We also
present three use cases where we use the obtained steady-
state probability distribution of the truncated DPS system to
analyze its tail performance under different load conditions.
Finally, we compare the tail performance of the DPS system
with that of the M/M/1-PS and M/M/1-FCFS with priority, in
order to determine the superior scheduling policy.

A. Overview of the DPS system

DPS was first introduced by Kleinrock as a generalisation
to the processor sharing system to model time-sharing systems
with priority [4]. While all customer classes receive equal
server capacity in case of an egalitarian processor sharing pol-
icy, the server capacity under DPS is processor shared based
on a given weight vector α = (α1, α2, ..., αk), where αi is the
weight associated with class-i customers. If there are Ni jobs
of class-i, each class-j job gets a fraction αj/

(∑k
i=1 αiNi

)
of the server’s capacity.

M/M/1-DPS system: Consider an M/M/1 system operating
under the DPS policy with two customer classes, where the
server’s capacity is shared between two customer classes with
the service priority expressed through weights α1 and α2.
Arrivals for each customer class follow a Poisson distribution
with mean λi, i ∈ {1, 2}, and the service times for each class
follow an Exponential distribution with mean 1/µi, i ∈ {1, 2}.

Figure 3 shows the M/M/1-DPS CTMC in which a state
is represented by the pair (n1, n2), where n1 and n2 are
the number of jobs in system for classes 1 and 2, respec-
tively; note that the CTMC is infinite in both dimensions.
The transition rates from state (n1, n2) to (n1 − 1, n2)
and (n1, n2 − 1) are rn1,n2 = n1α1µ1/(n1α1 + n2α2) and
sn1,n2

= n2α2µ2/(n1α1 + n2α2), respectively.
Significance of the M/M/1-DPS system and the challenges in

solving its underlying CTMC: The M/M/1-DPS system, with
the proper choice of weights, has been shown to outperform
the classical M/M/1-PS system for more than one customer

class [30]. This has sparked interest in the community in
the last decade to investigate the performance of DPS under
various traffic regimes [31, 32, 33]. The DPS system can also
be viewed as an idealization of the round-robin policy with
priority groups where the time quantum shrinks to zero [4].
This interpretation makes it a natural candidate to model
algorithms like Weighted Fair Queueing and Weighted Round
Robin, further raising the interest in DPS models [34].

Despite the popularity of the DPS model, which was first
introduced in the late 1960s [4], the exact steady-state proba-
bility distribution of its underlying CTMC continues to remain
elusive. This is because of the complex and non-repeating
structure of its multi-dimensional and infinite CTMC. Specif-
ically, the per-class service rate transitions (rn1,n2

and sn1,n2

in Figure 3) depend on the current number of customers in
each class. Exact analysis has been performed only for finite
DPS queues [35]. To the best of our knowledge, there has been
no prior work on the analysis of the infinite DPS system with
truncation error guarantee.

B. Results for truncation bounds

Fortunately, the exact moments of M/M/1-DPS queue-length
distribution are known [11], in terms of the solution to a
system of linear equations. This allows us to apply our
moment-based truncation bounds via Eqs. (11) and (15). To
apply our truncation bounds (and the state-of-the-art truncation
bounds [8] for comparison) to the M/M/1-DPS system, we
employ the following feasible Lyapunov function, motivated
by prior work in the stability literature [36]: g(n1, n2) =
(α1n

2
1)/2λ1+(α2n

2
2)/2λ2. The drift function for the M/M/1-

DPS chain in state (n1, n2) is as follows:

d(n1, n2) = λ1(g(n1+1, n2)−g(n1, n2)) + λ2(g(n1, n2+1)− g(n1, n2))

+ s1(g(n1−1, n2)− g(n1, n2)) + s2(g(n1, n2−1)− g(n1, n2)).
(16)

For the 1-D step drift bounding function, we start by setting an
appropriate value for n in Eq. (9), which in turn is determined
via θ since n = θE[Ni] where i ∈ {1, 2} is the dimension
along which the drift bound is being improved. Noting that
a smaller θ provides a tighter bound in Eq. (11), we set
θ = 0.01; this value of θ also satisfies the requirements of
Lemmas 1 and 2 (see Appendix B). We then derive n by
obtaining E[Ni] via the known first moment of the ith state
variable of the M/M/1-DPS model [11]. We compute c and
c1 via Eq. (9). Using the known second moments [11], we
compute the right-hand-side of Eq. (11); by setting this to ϵ
(the tolerance for probability mass loss due to truncation), we
solve for γ, which in turn gives us the attractor set C via
Eq. (7). The chain is then truncated to include all states in C.
We employ the step function over either dimension (i = {1, 2}
in Eq. (9)) and use the tighter of the two. Finally, the CTMC
is truncated along the two dimensions at m1 = max

(n1,n2)∈C
n1

and m2 = max
(n1,n2)∈C

n2. A step-by-step analytical illustration

of our technique is provided in Appendix A, for reference.
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(a) Case 1: ρ1 < ρ2 (ρ1/ρ = 0.1). (b) Case 2: ρ1 = ρ2 (ρ1/ρ = 0.5). (c) Case 3: ρ1 > ρ2 (ρ1/ρ = 0.8).

Fig. 4: Reduction in state space afforded by our different bounding functions over state-of-the-art for the M/M/1-DPS system
under different total offered loads (ρ) and class-1 load shares (ρ1/ρ) for ϵ = 0.01, α1 = 0.2, and α2 = 1− α1 = 0.8.

For the 2-D step drift bounding function, we again set θ
to a low value and then set n = (θE[Z])/2, where Z =
Ni + Nj . The remaining steps are similar to the 1-D step
bounding function discussed above.

Evaluation results: To evaluate the truncation improvement
over the state-of-the-art Dayar et al. [8], we numerically
experiment with different parameter values spanning the total
offered load in the range [0.1, 0.95]; total offered load is
expressed as ρ = ρ1 + ρ2, where ρi = λi/µi. We
find that the truncation bounds depend significantly on ρ, ρ1,
and ρ2. We thus present our results along these parameters by
setting µ2 = 1 and µ1 = 1.2 and varying λ1 and λ2. Figure 4
shows the reduction in the state space afforded by our drift
bounding functions over the state-of-the-art as a function of
the total offered load for different class-1 load shares when
α1 = 0.2, α2 = 1 − α1 = 0.8, and ϵ = 0.01. We see that
the improvement is typically higher for moderate total offered
loads (ρ ≈ 0.5).

In general, the 2-D step function provides more improve-
ment over state-of-the-art compared to the 1-D step function,
with as much as 65% reduction in state space over state-of-
the-art. In other words, by using our technique, the truncated
DPS CTMC can be up to 65% smaller while providing the
same probability mass accuracy guarantee (ϵ = 0.01). For this
peak reduction case, the state-of-the-art truncates the CTMC
at n1 = 1358 and n2 = 101, whereas our 2-D step bounding
function truncates at n1 = 801 and n2 = 60; the truncation
bounds from “below” are n1 = 0 and n2 = 0 in both cases.

Across all experiments in Figure 4, the average improve-
ments over state-of-the-art are around 39% and 27% for the
2-D and 1-D step functions, respectively. The corresponding
average improvements for 0.5 ≤ ρ ≤ 0.95 are 45% and 33%;
since the truncated CTMC contains more states for higher
loads, the absolute reduction in state space (the number of
states) is much higher for this range.

Further analysis: We consider the better performing drift
bounding function, the 2-D step function, and experiment with
different α1 values. Figure 5 shows the state space reduction
over the state-of-the-art as a function of total offered load
for different class-1 load shares and for different α1 and ϵ
values. As before, the improvement is higher for moderate
offered loads. In general, the improvement increases as α1

increases, except when the load share of class-1 is high, in
which case the improvement tends to decrease as α1 increases.
The improvements are largely insensitive to the truncation
error guarantee, ϵ; we also experimented with smaller ϵ values
with similar insensitivity results.

Across all experiments shown in Figure 5, the average
improvement over state-of-the-art is around 33%, 34%, and
35% for α1 = 0.2, α1 = 0.6, and α1 = 0.8, respectively. The
corresponding improvements for 0.5 ≤ ρ ≤ 0.95 are 41%,
42%, and 44%. The maximum improvement is 71%, with
the state-of-the-art truncating the CTMC at n1 = 108 and
n2 = 3292, while our 2-D step bounding function truncates
the CTMC at n1 = 65 and n2 = 1610 (here, the load share
of class-2 was higher, so n2 is truncated at a larger value than
n1).

By providing tighter truncation, our technique significantly
reduces the computational effort required to solve the trun-
cated CTMC. For example, averaged across all cases in Fig-
ure 5, solving the truncated CTMC (by obtaining the steady-
state probabilities of all states in the truncated CTMC via
solving of the relevant balance equations) is 3× faster when
employing our bounds as opposed to employing the bounds
suggested by the state-of-the-art.

Validation results: For validation1, we compare the obtained
moments from the truncated CTMC with the exact moments
provided in Rege et al. [11]. Using the 1-D step function
and setting ϵ = 0.1, the average difference between our
results and the exact results for the first, second, and third
moments of number of jobs in system (for either class) across
various parameter settings is around 4× 10−4%, 10−3%, and
5×10−3%, respectively. We further validate our technique by
comparing the steady-state distribution of the truncated CTMC
for α1 = α2 = 0.5 with that of the classical processor sharing
system (a DPS with α1 = α2). The maximum observed
difference in per-state probability is only around 10−5%.

Application to higher-dimensional DPS chains: Our trun-
cation technique is not limited to the 2-dimensional DPS

1In general, it may be difficult to numerically validate the truncation bounds
since the CTMCs under consideration are intractable. However, under certain
parameter settings, the underlying CTMC’s exact steady-state probabilities can
be obtained. Nonetheless, the theoretical guarantees presented in Section III
always hold.
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(a) Case 1: ρ1 < ρ2 (ρ1/ρ = 0.1). (b) Case 2: ρ1 = ρ2 (ρ1/ρ = 0.5). (c) Case 3: ρ1 > ρ2 (ρ1/ρ = 0.8).

Fig. 5: Reduction in state space afforded by our 2-D step bounding function over state-of-the-art for the M/M/1-DPS system
under different DPS weights (α1), total offered loads (ρ), and class-1 load shares (ρ1/ρ).

(a) 1-D step function

(b) 2-D step function
Fig. 6: Reduction in state space afforded by our step bounding
functions over state-of-the-art for the M/M/1-DPS system with
k customer classes for ϵ = 0.1.

chain. Since the exact moments of the M/M/1-DPS queue-
length distribution are known for any number of customer
classes, our truncation technique can be readily applied to
the M/M/1-DPS CTMC for an arbitrary number of customer
classes (along the same lines as for the 2-class M/M/1-DPS
CTMC analyzed above). Note that for a k-class M/M/1-
DPS system, the CTMC will be k-dimensional, and infinite
in all k dimensions. We use the same form of Lyapunov
function for the k-dimensional CTMCs as employed for the
2-dimensional CTMC; for example, the Lyapunov function
we consider for the 3-class M/M/1-DPS is g(n1, n2, n3) =
(α1n

2
1)/2λ1 + (α2n

2
2)/2λ2 + (α3n

2
3)/2λ3.

Figure 6 shows the reduction in state space afforded by our

truncation technique over the state-of-the-art as a function of
the total offered load for the M/M/1-DPS with k = 2, 3, 4
customer classes; we show results for the 1-D and 2-D step
drift bounding functions. We set ϵ = 0.1 and consider equally-
distributed load shares with αi = 1/k for all k customer
classes. We observe that the reduction in state space increases
with k, with the 2-D step function generally providing better
improvements.

Across all experiments shown in Figure 6, the average (and
peak) reduction in state space afforded by our technique for
k = 4, k = 3, and k = 2 is 44% (72%), 36% (68%), and 30%
(58%), respectively, using the 2-D step bounding function.
The corresponding improvements for the 1-D step bounding
function are 35% (58%), 30% (53%), and 24% (45%). We note
that the parameters corresponding to the total offered load (ρ)
of 0.1 do not satisfy the conditions outlined in Lemmas 1 and
2. Thus, the truncation for ρ = 0.1 is the same as that of Dayar
et al., resulting in 0 improvement. In terms of computational
effort, across all experiments in Figure 6, solving the truncated
CTMC is as much as 7× faster when employing our bounds
as opposed to employing the bounds suggested by the state-
of-the-art.

C. Applications of the truncated DPS CTMC

For modern web services, such as Amazon [2] and
Google [1], tail performance measures, e.g., tail latency or tail
queue length, are critical to provide acceptable performance to
customers. Average measures, such as the mean response time
or queue length, are now considered outdated when analyzing
modern applications [26].

To analyze the M/M/1-DPS performance, we consider the
90th percentile of the number of jobs in system, denoted as
P90. We employ our 2-D step drift bounding function to find
the truncation bounds by setting ϵ = 0.01. We then solve
the balance equations for the truncated CTMC and obtain
its steady-state probability distribution; we use the resulting
probability distribution to compute the P90 values. Other
tail measures can be similarly computed; for example, tail
response time can be computed by truncating the CTMC and
leveraging existing results for finite DPS queues [35]. We now
present three use cases to illustrate the practical applicability of
our truncation technique by analyzing the performance of the
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Fig. 7: Comparison of sum of P90 for both classes of jobs in
system under the PS and DPS scheduling policies. Results in
the [0.9 0.95] range are zoomed in for illustration.

DPS system. For each use case, we consider a slightly different
tail performance objective to highlight the applicability of our
work.

1) Use case 1: DPS versus PS, for tail metrics: Prior work
has shown that DPS can outperform, in terms of the mean
queue length, the classical M/M/1-PS system with more than
one customer class when a larger weight is assigned to the
class with smaller mean service time [30]. We now investigate
whether this result still holds for tail measures, such as the P90
of the number of customers in system. For both PS and DPS,
we consider (the same) two customer classes with the offered
load for class i being ρi = λi/µi, and the total offered load
ρ = ρ1 + ρ2.

Figure 7 shows the summation of P90 values of the number
of customers in system for both classes, P90(N1) + P90(N2),
as a function of ρ for the M/M/1-PS (black line with circles)
and different M/M/1-DPS systems with varying ρ1 values;
we set the parameters for the figure such that the mean
service time of class-1 customers is lesser than that of class-2
customers (1/µ1 < 1/µ2) and set α1 = 0.9 to give preferential
treatment to the class-1. We separately zoom in and plot the
[0.9 0.95] x-axis range results for illustration. Note that the
P90 values for M/M/1-PS for different values of ρ1/ρ are quite
similar and so appear as a single line.

We find that the DPS system outperforms the PS system
for almost all parameter configurations shown in the figure,
with more pronounced (and visible) improvements, ranging
from 2%–9%, at higher offered loads (see zoomed in plot
on the right of Figure 7). The average improvement over all
cases shown in Figure 7 is about 4%. For the DPS cases in
Figure 7, α1 = 0.1, and thus α2 = 0.9 > α1. By providing
higher priority, or weights, for the class with smaller mean
service time (with smaller jobs), DPS is able to achieve better
performance, by as much as 9%. We also experimented with
α1 > α2, and found that in this case, PS outperforms DPS.

2) Use case 2: Optimizing the weights of DPS: As seen
in the previous use case, the weights of the two customer
classes, α1 and α2, can significantly impact the performance
of the M/M/1-DPS system. We now analyze how the optimal
weights change as a function of various system parameters. For
optimality, we consider the Service Level Objective (SLO) to
be in the form of upper bounds on the P90 of number of jobs

(a) µ1 = 0.6

(b) µ1 = 1.2
Fig. 8: Dynamic weight selection to meet P90 SLOs when the
total offered load, ρ is constant (ρ = 0.9).

in system for the two customer classes, denoted as C1 max
and C2 max.

Figure 8 shows the P90 value for number of customers in
system under different α1 and α2 values as a function of the
fractional load of class-1 customers, ρ1/ρ; we fix ρ = 0.9.
We set µ2 = 1 and experiment with two different µ1 values,
0.6 and 1.2; for each setting of µ1, we find the values of λ1

and λ2 such that the total load is 0.9 and the fractional load
of class-1 is as shown on the x-axis. We only show specific
α values in the graph for readability; note that α2 = 1− α1.
The SLOs for the two classes are set as C1 max = 12 and
C2 max = 18, shown by the horizontal black lines.

As the fraction of class-1 load increases, the P90 value of
class-1 customers, P90(N1), denoted by solid lines, increases,
and that of class-2 customers, P90(N2), denoted by dashed
lines, decreases. As α1 increases, P90(N1) decreases while
P90(N2) increases, in accordance with the DPS policy. For low
values of ρ1/ρ, we see that only α1 = 0.3 meets both SLOs;
for higher values of α1, the C2 max SLO is not met. For
moderate values of class-1 load, α1 = 0.7 works well, whereas
α1 = 0.3 violates the C1 max SLO. Finally, for larger values
of class-1 load, α1 must be high, as much as 0.9, for both
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SLOs to be met. In Figure 8a, jobs of class-2 are smaller
(µ2 = 1 > µ1), and so experience poor performance when
their weight is low (α1 = 0.9). By contrast, in Figure 8b, jobs
of class-1 are smaller, and thus experience poor performance
when their weight is low (α1 = 0.3).

We also experimented with different values of total offered
load, ρ, by fixing the ρ1/ρ ratio. We again found that the
optimal weights change with total offered load. These results
highlight the importance of dynamically adapting the DPS
weights in response to changes in load to comply with tail
performance requirements.

3) Use case 3: When is DPS better than FCFS with
priority: Our last use case focuses on the long-standing debate
between PS and FCFS policies [37, 38, 39]. In particular, we
investigate the performance of M/M/1-DPS when compared
with that of an M/M/1-FCFS with priority; as before, we
consider two customer (priority) classes. For the SLO, we
consider the weighted sum of tail of number of jobs in system:
10 · P90(N1) + P90(N2). Of course, other weighted sums
can be easily evaluated as well. For the M/M/1-FCFS with
priority, we employ existing analytical results to obtain the
P90 values [40].

We start by considering the non-preemptive version of the
M/M/1-FCFS with priority. Figure 9 shows our results for the
weighted metric as a function of ρ1/ρ. To prioritize customer
1 jobs, we set α1 = 0.95 for DPS; results are qualitatively
similar, but not as pronounced, under other α1 > 0.5 values.
We set µ1 = 0.6 and µ2 = 1, and experiment with total offered
load of ρ = 0.7 and ρ = 0.9. For each case, we find values of
λ1 and λ2 such that the total load is ρ and the fractional load
of customer 1 is as shown on the x-axis.

When ρ = 0.7, both policies perform similarly. However,
when ρ = 0.9, we observe an interesting behavior. When the
load share of customer class-1 is low, DPS performs better,
whereas when the load share of class-1 is high, FCFS performs
better. This is because for low load share of class-1, the load is
higher for class-2 jobs, and due to the non-preemptive FCFS
policy we consider, class-2 jobs can “hold up” incoming class-
1 jobs, resulting in a high penalty under our metric that gives
a higher weight to P90(N1). For high load share of class-1,
FCFS outperforms DPS since FCFS provides strict priority, as
opposed to the α1-weighted DPS policy, which still provides
a weight of 1− α1 = 0.05 for class-2 jobs.

We observed a similar trend for other values of µ1 and µ2

as well. Interestingly, under the DPS policy, the exact values
of P90(N1) and P90(N2) can change for different arrival and
service rates while the total offered load (ρ) and the per-class
loads (ρ1 and ρ2) are kept constant. This is in contrast to the
PS policy for which the tail of number of jobs in system only
depends on ρ, ρ1, and ρ2, and not the individual arrival and
service rates [41].

We also compared the performance of M/M/1-DPS with
that of preemptive M/M/1-FCFS. However, in this case, across
different parameter settings, the preemptive FCFS always
outperforms M/M/1-DPS, with respect to the tail of number
of jobs in system.

(a) ρ = 0.7

(b) ρ = 0.9
Fig. 9: Performance of M/M/1-DPS and non-preemptive
M/M/1-FCFS with priority for different load conditions.

V. APPLYING OUR TRUNCATION TECHNIQUE TO THE
PREEMPTIVE M/M/C+M QUEUE WITH TWO PRIORITY

CLASSES

In this section, we consider multi-server priority queues
as another example of CTMCs for which our technique is
applicable. Multi-server priority queues with preemption have
been widely employed to model differentiated service for
multiple customer classes in computer systems, call centers,
and health care management [12, 24, 25]. For the case with
customer abandonment (impatient customers), referred to as
the M/M/c+M priority queue, the exact steady-state probability
distribution for the low-priority customers is not known (the
queue for the high-priority customers follows the M/M/c+M
queue, also referred to as the Erlang-A model [12]). This is
because the underlying CTMC, shown in Figure 10, is infinite
in two dimensions and has state-dependent transitions—the
upward and backward transitions in Figure 10 with rates ri,j
and si,j , respectively. For the case with no abandonment,
Wang et al. [24] recently introduced a technique to obtain the
generating function for the number of low-priority customers
in system when c = 2; for c > 2, the technique is cumbersome,
so only moments were obtained.
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Fig. 10: CTMC for the preemptive M/M/c+M with two priority
classes. For state (n1, n2), n1 is the number of jobs of the
high-priority class (class-1) and n2 is the number of jobs of the
low-priority class (class-2). The transition rates are rn1,n2

=
µ1 ·n1s+β1 ·(n1−n1s) and sn1,n2

= µ2 ·n2s+β2 ·(n2−n2s),
where n1s = min{n1, c} and n2s = min{c − n1s, n2} are
the number of high-priority jobs and low-priority jobs being
served, respectively, and βl is the abandonment rate of class-l
jobs.

For both the with- and without-abandonment cases noted
above, our truncation technique can be readily applied since
the moments are available. Interestingly, for preemptive the
M/M/c+M priority queue, only the moments of the high-
priority jobs are known (via the M/M/c+M model [12]), but
this suffices to obtain truncation bounds via our 1-D step
bounding function from Section III-B. We find that both
(n1 + n2) and (n1 + n2)

2 are valid Lyapunov functions for
the M/M/c+M priority queue. Our experiments with these two
functions show that (n1 + n2)

2 generally provides tighter
bounds compared to (n1 + n2) for the M/M/c+M priority
queue. We thus use (n1 + n2)

2 for the experiments in this
section to compare the truncation bounds obtained from our
technique and those obtained from Dayar et al. For reference,
an analytical illustration of our truncation technique for the
M/M/1+M priority queue based on the simpler Lyapunov
function, (n1 + n2), is provided in Appendix A.

Figure 11 shows the reduction in the state space achieved
by our 1-D step bounding function over the state-of-the-art
as a function of the total offered load for different class-1
load shares and different error thresholds, ϵ. As before, we
set µ1 = 1.2 and µ2 = 1, and vary λ1 and λ2 to obtain the
required total and per-class loads. The abandonment rate is set
as β1 = 0.1λ1 and β2 = 0.01λ2, where βi is the abandonment
rate for class-i customers.

For the preemptive M/M/3+M queue with two priority
classes, we achieve a significant reduction in state space
compared to the state-of-the-art [8], with average reduction

(a) M/M/3+M

(b) M/M/100+M

Fig. 11: Reduction in state space for the preemptive M/M/c+M
queue with two priority classes.

of about 28%, 18%, and 5% for class-1 load shares of 0.8,
0.5, and 0.1, respectively; the corresponding peak reductions
are 52%, 38%, and 13%. For the preemptive M/M/100+M
queue with two priority classes, we achieve moderate savings,
with average and peak reduction ranging from 1%–13% and
2%–17%, respectively, across different class-1 load shares. In
general, the reductions are higher for higher class-1 load shares
(and for moderate offered loads). This is likely because the
E[Ni]

2/E[N2
i ] term, with i = 1, in Eq. (11) is larger for

higher class-1 load shares, thus resulting in a tighter bound.
To validate our truncation accuracy, we leverage the fact that

the higher priority class customers constitute an M/M/c+M
queue, for which the steady-state probability distribution is
known [12]. Comparing the marginal steady-state distribution
of the higher priority class of the truncated M/M/3+M priority
queue chain for ϵ = 0.1 with the steady-state distribution
of M/M/3+M, we find that the maximum per-state deviation
across all states is about 3×10−5%. For the M/M/100+M, the
maximum deviation is about 8× 10−4%.

By leveraging the fact that only the moments of the highest
priority class customer are required, our bounding technique
can be extended to truncate the CTMCs of the M/M/c+M
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priority systems with any number of priority classes. For
the M/M/3+M system with three classes, with the underly-
ing CTMC being three-dimensional, our 1-D step bounding
function reduces the state space by about 21%, on average
(across parameter settings similar to those in Figure 11a), and
by up to 52%, compared to the state-of-the-art.

We also applied our truncation technique to the preemptive
M/M/c priority queue with two priority classes but without
abandonment, for which the analysis is known to be cumber-
some when c > 2 [24]. For the preemptive M/M/3 queue with
two priority classes, our 1-D step bounding function provides,
on average, a 23% reduction in state space when compared to
the state-of-the-art.

VI. CONCLUSION
In this paper, we present a Lyapunov function based

technique to obtain tight truncation bounds with probability
mass guarantees for multi-dimensional and infinite state-space
CTMCs. By leveraging the known moments of the CTMC,
compared to the state-of-the-art, our technique significantly
truncates the state space, by around 34% on average and
by as much as 72% in the case of M/M/1-DPS model, and
by around 14% on average and by as much as 52% in the
case of the M/M/c+M model. The truncated CTMC can then
be easily and quickly solved (as much as 7× speedup) to
obtain the steady-state probability distribution. Importantly, we
prove that the truncation guarantees a user-specified bound on
loss in probability mass, thus allowing for arbitrary accuracy
guarantees.

Our technique is valuable to researchers who deal with
infinite-space, multi-dimensional CTMCs with state-dependent
transitions, for which the steady-state probabilities are often
challenging to obtain but moments of the state variables may
be available; two such examples that we considered in this
paper are the M/M/1-DPS and the preemptive M/M/c+M
priority queue. Our technique is also valuable for the analysis
of finite but large state-space CTMCs where the computation
of the steady-state probabilities is computationally expensive,
thus benefiting from the state-space reduction afforded by our
technique. Finally, our technique is also applicable to CTMCs
where the exact moments are not available but bounds on the
moments are known via, for example, drift analysis [21].
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APPENDIX

A. Illustrating the application of our technique for a simple
chain

This section provides a step-by-step pseudo-analytical pro-
cedure of applying our technique for the preemptive M/M/1+M
priority queue with two classes of customers (with abandon-
ment). The CTMC for this model follows Figure 10 (with
c = 1), which is infinite in both dimensions. Let the average
arrival rate, average service rate, average abandonment rate,
and number of class i ∈ {1, 2} customers be denoted as λi,
µi, βi, and ni, respectively.

Our objective is to find a truncated version of this CTMC,
which contains at least (1−ϵ) fraction of the probability mass
of the original (infinite) CTMC. We achieve this by finding
a subset C of the original CTMC’s state space such that the
probability mass outside C,

∑
n∈C π(n), is at most ϵ. We then

truncate the original CTMC to contain at least the states in C,
thus ensuring that the probability mass inside the truncated
chain is at least (1− ϵ).

Step 1: Choose a suitable Lyapunov function g(n).
The first step is to choose a Lyapunov function for the
CTMC in consideration. In general, finding the Lyapunov
function is a non-trivial task [8, 22], but this is not the
focus of our work. For our preemptive M/M/1+M priority
queue chain, it can be easily verified that g(n1, n2) =
(n1+n2) is a Lyapunov function. For ease of exposition
of the steps of our truncation technique, we use this
Lyapunov function in this section.

Step 2: Calculate d(n), the drift of g(n).
For a CTMC with state vector n = (n1, n2, n3, ..., nk),
we define pairs (Ti(n), vi), where Ti : S → R≥0,
with i indexing all the possible transitions from state n,
determines the transition rate in a state n, and vi ∈ Z1×k
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is the state change vector. That is, the ith transition from
state n goes to state n + vi with rate Ti(n). With these
definitions, the drift of the Lyapunov function can be
obtained as:

d(n) =

m∑
i=1

Ti(n) · (g(n+ vi)− g(n)) , (17)

where m is the total number of transitions from state n.
In our specific example of the priority queue, the transi-
tion pairs for state (n1, n2) are (λ1, (1, 0)), (λ2, (0, 1)),
(rn1,n2 , (−1, 0)), and (sn1,n2 , (0,−1)), where rn1,n2 and
sn1,n2

are defined in Section V (with c = 1). Substituting
these transition pairs in Eq. (17), we have d(n1, n2) =
λ1 + λ2 − rn1,n2

− sn1,n2
. This drift function can be

expressed as the below piece-wise function for easier
analysis.

d(n1, n2) =

 β1 + λ1 + λ2 − µ1 − β1n1 − β2n2 n1 ≥ 1
β2 + λ1 + λ2 − µ2 − β2n2 n1 = 0 and n2 ≥ 1
λ1 + λ2 n1 = 0 and n2 = 0

(18)

Step 3: Choose a drift bounding function, f(n).
For ease of illustration, we choose the 1-D step bounding
function for the preemptive M/M/1+M priority queue:

f1(n) =

{
c = sup∀n∈S d(n), ∀n ∈ S \ S′,

c1 = sup∀n∈S′ d(n), ∀n ∈ S′,

where we set S′ = {n | n1 > n}, for some n ≥ 0. The
supremum of d(n) for this chain can be found (using
Eq. (18)) as c = λ1 + λ2. For n ≥ 0, by definition,
S′ contains states with n1 > 0, and so the supremum of
d(n) in S′ is dictated by the first sub-function in Eq. (18),
which gives us c1 = −(⌊n+1⌋)β1+β1+λ1+λ2−µ1.

Step 4: Determine the upper bound on the probability mass in C.
Using the properties of the drift and the bounding
function, we obtain an upper bound on the probability
mass outside the attractor set, C, via Eq. (8):∑

n∈C π(n) ≤
∑

n∈C π(n)·f(n)
γ . Substituting the step

function, f1(n), in place of f(n), leads to Eq. (10):∑
n∈C π(n) ≤ c

c1 + γ
− c− c1

c1 + γ

∑
n∈S′ π(n). To

obtain the value of the upper bound on
∑

n∈C π(n),
we need to find the value of

∑
n∈S′ π(n). If the

exact value of
∑

n∈S′ π(n) cannot be found, a lower
bound on this term can be used. For our example
chain, we use the Paley-Zygmund inequality to
come up with an upper bound given by Eq. (11) as

c

c1 + γ
− c− c1

c1 + γ

(
1− n

E[N1]

)2 E[N1]
2

E[N2
1 ]

, where we

set n = θE[N1] in the Paley-Zygmund inequality.
Substituting the values of c and c1 from Step 3,
we have an analytical expression for the upper
bound on

∑
n∈C π(n), say U :

∑
n∈C π(n) ≤ U =

−β1⌊n⌋(E[N1]−n)2−µ1E[N1]
2+2µ1E[N1]n+λ1E[N2

1 ]+λ2E[N2
1 ]−µ1n

2

E[N2
1 ](γ−β1⌊n⌋+λ1+λ2−µ1)

.

Step 5: Solve U = ϵ to find γ.
We set the upper bound on the probability mass outside
the attractor set to be the allowable error, ϵ, and we
solve for γ to obtain the truncated chain (in the next
step). For our example, equating the upper bound
to ϵ gives a linear equation in γ. We obtain E[N1]
and E[N2

1 ] for our chain based on results from prior
work [12]. The obtained linear equation can be solved
analytically to obtain the value of γ. In our case, γ =
−β1⌊n⌋(E[N1]

2−2E[N1]n−ϵE[N2
1 ]+n2)−µ1E[N1]

2+2µ1E[N1]n+λ1(E[N2
1 ]−ϵE[N2

1 ])−ϵλ2E[N2
1 ]+ϵµ1E[N2

1 ]+λ2E[N2
1 ]−µ1n

2

ϵE[N2
1 ]

.

Step 6: Find truncation bounds.
We use the above value of γ to find the attractor set C
via Eq. (7) as C = {n ∈ S | d(n) > −γ}. The truncated
chain must at least contain C to provide the probability
mass guarantee. For our example, we find the smallest
values of k1 and k2 such that d(n) ≤ −γ for states (k1, 0)
and (0, k2); note that for any state (n1, n2) with n1 ≥ k1
or n2 ≥ k2, we have, via Eq. (18), that d(n) ≤ − γ.
The values k1 = (β1 + γ + λ1 + λ2 − µ)/β1 and k2 =
(β1 + γ + λ1 + λ2 − µ)/β2 satisfy the above require-
ments, giving us C = {n ∈ S | n1 < k1 and n2 < k2}.
We thus obtain our truncated chain by truncating the
original chain along the first and second dimensions at
⌈(k1 − 1)⌉ and ⌈(k2 − 1)⌉, respectively.

The truncated chain can be solved to obtain the steady-state
distribution (or associated performance measures). Note that
other eligible Lyapunov functions and/or bounding functions
can be used in the above example. The derivations in Steps
4 and 5 will change accordingly, but otherwise the high-level
technique and sequence of steps will remain unchanged.

B. Proofs of Lemmas 1 and 2

We prove Lemma 1 by showing that γO ≤ γD, provided
ϵ ≤ E[Ni]

2/E[N2
i ] where γO and γD denote the γ values

obtained via our 1-D step drift bounding function and via the
supremum drift bounding function (used in Dayar et al. [8]),
respectively, and Ni represents an arbitrary infinite dimension
of the CTMC. Recall that γ is the parameter that determines
the minimum number of states that need to be part of the
truncated chain via the attractor set, C = {n ∈ S | d(n) >
−γ}.

Based on the supremum function (the drift bounding func-
tion used in Dayar et al. [8]), the upper bound on the
probability mass of the states outside the attractor set is given
by c/(c+ γ) (Eq. (6)). By equating this upper bound to ϵ, we
have:

γD =
c

ϵ
− c

Likewise, by equating the upper bound obtained via our 1-D
step function (provided in Eq. (11)) to ϵ, we have:

ϵ =
c

c1 + γO
− c− c1

c1 + γO
· x =⇒ (c1 + γO)ϵ = c− (c− c1) · x =⇒ γO =

c

ϵ
− c− c1

ϵ
· x− c1.

(19)

where x = (1− θ)2y and y = E[Ni]
2/E[N2

i ].
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We thus have:

γO ≤ γD ⇐⇒ c

ϵ
− c− c1

ϵ
· x− c1 ≤ c

ϵ
− c

⇐⇒ 0 ≤ (c− c1)(
x

ϵ
− 1)

⇐⇒ ϵ ≤ x ∵ c− c1 ≥ 0

⇐⇒ ϵ ≤ (1− θ)2y

⇐⇒ θ ≤ 1−
√
ϵ/y (20)

Recall, from Definition 1, that θ is a parameter in the Paley-
Zygmund inequality that can be chosen to take any value in
the range [0, 1]. Thus, if ϵ ≤ y, we have (1−

√
ϵ/y) ≥ 0, and

since (1−
√
ϵ/y) ≤ 1, any θ ∈ [0, 1−

√
ϵ/y] will satisfy the

condition in Eq. (20). For example, the value of θ = 0.01 used
in our experiments satisfied the condition from Eq. (20). Note
that, in the above derivation, we have used the fact that c ≥ 0
since d(n) ≥ 0 for at least some states (otherwise, πdT < 0).
Hence, provided ϵ ≤ y = E[Ni]

2

E[N2
i ]

, our truncation bounds are
at least as tight as those obtained by Dayar et al. [8]. Since in
practice the value of ϵ is usually small, we believe this is not
too restrictive. In fact, all the parameters that we use in our
experiments, except the ones corresponding to very low total
offered loads, satisfy this condition.

A similar proof holds for the 2-D step function (Lemma 2)
with the only change being y = E[Z]2/E[Z2], where Z is as
given in Eq. (14).
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