
MERIT: Model-driven Rehoming for VNF Chains
(Technical Report)

Muhammad Wajahat∗, Bharath Balasubramanian†, Anshul Gandhi∗, Gueyoung Jung†,
Shankaranarayanan Puzhavakath Narayanan†
∗Stony Brook University †AT&T Labs - Research

Abstract—Network service providers often run service chains
of Virtual Network Functions (VNFs) on privately owned clouds
with limited capacity. These specialized service chains need to
meet strict Service Level Objectives (SLOs), especially along the
lines of availability (e.g., First responder services). Hence, VNFs
in such thinly provisioned clouds may need to be frequently
moved, or rehomed, when reacting to various cloud events like
hotspots, failures and upgrades. In this report, we perform a
detailed measurement study to show that naive strategies for
rehoming, applied uniformly across all VNFs of the service chain,
are often sub-optimal when considering different metrics like the
user-perceived service downtime and the provider-incurred time
delay to complete the rehoming. We propose a novel ModEl-
driven RehomIng Technique (MERIT) for VNF chains and
empirically analyze the effect of various system parameters on
different rehoming actions. Based on our analysis, we develop
generic rehoming cost models and further, design and implement
an autonomous rehoming system based on MERIT that identifies
and executes the optimal rehoming action for each VNF in a
service chain. Our experimental results on OpenStack using real-
world chains show that MERIT can reduce the chain rehoming
delay by up to 47% and the chain downtime by up to 49%.

I. INTRODUCTION

Network function virtualization (NFV) has several benefits
such as cost-efficient deployment on commodity hardware,
elasticity, and reduced tie-in to proprietary hardware. To avail
these benefits, major Network Service Providers like AT&T
and Verizon are replacing specialized networking hardware
with Virtual Network Function (VNF) chains [1], where indi-
vidual VNFs provide integrated network services (the tenants)
on virtualized infrastructure (the cloud provider).

VNF service chains often have stringent performance Ser-
vice Level Objectives (SLOs) [2]. To maintain the perfor-
mance, resiliency and stability of these network services, the
stringent Service Level Objectives (SLOs) of VNF service
chains need to be met [2]. For example, first responder
services (EMS, police, fire) requirevery high system avail-
ability [3]. This is challenging since events like hotspots
(compute/network bottlenecks), VM workload shifts, etc.,
lower the performance and availability of the service [4], [5],
[6], [7]. Traditional cloud providers, like Amazon EC2 [8]
and Google Cloud [9], which have considerable resources,
typically rely on redundancy and over provisioning to achieve
stringent tenant SLOs. Network provider clouds are typically
resource constrained as they primarily consist of cloud sites
(including edge sites) that host anywhere between 10–500
servers [10]. To maintain service chain SLOs under these
constraints, network providers often have to rehome (or move)

Video
Optimizer Pool

DPI+Router Router

Load Balancer

Firewall

Video
traffic

Other
traffic

Regular Service Path
Video Service Path

NFV Infrastructure
(NFVI)

VIRTUALIZATION LAYER
Hardware
resources Compute Network Storage

VNFs

Fig. 1: An NFV ecosystem showing a video optimizing service chain,
the VNFs of which are deployed on virtualized infrastructure (NFVI).
The NFV-MANO helps in orchestration and life-cycle management
of the service including monitoring the health of VNFs/NFVI and
taking the appropriate remedial rehoming actions.

one or more VNFs (or VMs, used interchangeably) of the
service chain to a different host.

Figure 1 shows an NFV ecosystem with a service chain
that optimizes video traffic through the Video Service Path,
and routes all other traffic flow through the Regular Service
Path. The VNFs of the service are deployed on top of the
virtualized infrastructure (NFVI) by the orchestrator with the
help of VNF Managers and virtual infrastructure managers.
The NFV-MANO also helps in the life-cycle management
including monitoring the health of the VNFs and NFVI, and
taking the appropriate remedial actions.

The typical approach to rehoming an entire service chain
involves applying the same corrective action, such as VM live
migration, to all VNFs in the chain [11], [12]. In this report,
we contend that this approach is too simplistic, and argue that
it may be more beneficial to apply heterogeneous rehoming
actions for different VNFs in a service chain. For example, in
Figure 1, to address a hotspot in one of the physical servers
that hosts video optimizer VNFs, all the resident VNFs can
be live-migrated to different hosts. However, knowing that the
video optimizer VNFs are stateless, rebuilding them (which
recreates VMs and re-routes traffic) may be a quicker option.
In Section II, we validate our intuition with a real experiment
that illustrates how for a simple service chain consisting of a
firewall and a web server the optimal rehoming action is in fact
to migrate the firewall and rebuild the web server VM. Based
on this intuition, this report aims to address the following
question – “What is the optimal rehoming action for each
VNF in a service chain?”.

In particular, given a service chain and a set of potential
rehoming actions, our goal is to determine the exact rehoming
action that must be employed for each VNF in the chain;

different VNFs may have a different optimal rehoming action.
To the best of our knowledge, no prior work has addressed

the question of identifying the optimal set of rehoming actions
for a service chain. While most of the prior work ([11], [12],
[13], [14], [15], [16], [17], [18]) has focused exclusively on
live migration, and on the effect of rehoming on individual
VMs, we show that the rehoming action of one VNF can
impact the rehoming cost of other VNFs in a service chain.
Also, unlike traditional performance metrics (e.g., end-to-end
service latency) which measure the overall impact to the user,
we focus on metrics that effectively capture the impact of
rehoming actions. Note that our focus is not on developing new
rehoming actions or on enhancing existing rehoming actions,
but on determining which of the available actions to employ
for each VNF in the service chain. This is a challenging task
for several reasons:
• The candidate set of rehoming actions for a chain grows

exponentially with the number of VNFs. For example, in
Figure 1, if we only consider rebuild, cold-migrate and live-
migrate as available rehoming actions, there are 35 possible
rehoming choices for the service chain with 5 VNFs.

• The optimal rehoming actions for a chain depend on the
exact metric(s) being considered. Even for a single VNF,
optimizing for time taken to complete the rehoming (or
rehoming delay) can lead to a choice which is different from
the choice for optimizing the service connectivity downtime.

• The optimal rehoming action(s) can change with the state
of the VMs (e.g., the image size or disk size) and the state
of the underlying platform (e.g., total traffic).

We address these challenges through a novel Model-driven
Rehoming Technique, MERIT, that determines the optimal
rehoming actions for the entire VNF chain, based on four key
features: (1) Model-driven: developing VNF-agnostic models
for each rehoming action based on detailed empirical studies
that capture the impact of various parameters on connec-
tivity downtime and rehoming delay; (2) Contention-aware:
accounting for the resource contention that results when re-
homing the entire service chain as multiple rehoming actions
migrate state simultaneously across the network and on shared
storage; (3) Graybox: leveraging information exchange (e.g.,
statefulness of VNFs) between tenants and network provider,
typically common in such private clouds, to identify the fea-
sible rehoming actions for each VNF, thus reducing the state
space of candidate actions; and (4) Autonomous: employing
an end-to-end implementation to automatically rehome VNFs
and continually update cost models at runtime. Based on these
features, we make the following contributions in this report:

• Looking beyond live migrate (Section II): In sharp contrast
to prior works that only focus on live migrate, we show
that rebuild and cold migrate could be potentially superior
alternatives, especially for memory-intensive VNFs or non-
shared storage environments where live migrate is infeasible.

• Empirical analysis of rehoming costs (Section III): We
perform measurement studies on an OpenStack cluster to
capture the impact of system parameters on the rehoming

cost for different out-of-the box rehoming actions on both
shared and non-shared storage configurations. Our analysis
yields crucial insights that guides our MERIT design. For
example, while rehoming delay is typically hundreds of
seconds lower for rebuild than for cold/live migrate, the
connectivity downtime can be several tens of seconds higher
for rebuild, especially for low VNF disk sizes. Likewise,
while live migrate typically provides very low connectivity
downtime, it can incur a substantial rehoming delay of
several minutes, and may even time out.

• Modeling of rehoming costs (Section IV): Using our mea-
surements, we leverage supervised learning to model the
delay and downtime for different rehoming actions. Our
modeling efforts reveal that while simple regression models
work well for rebuild and cold migrate, more complex
models, e.g., neural networks, are needed for live migrate.

• Implementation and evaluation on real-world service
chains (Sections V and VI): We implement an (open-
source [19]) autonomous rehoming system that leverages
empirically trained models and interacts with OpenStack to
execute optimal rehoming on service chains. Our system
obtains service and VNF models from the service provider
inventory, and uses the empirically trained rehoming cost
models to predict the rehoming delay and connectivity
downtime. Finally, it interacts with OpenStack orchestrators
to execute optimal rehoming on service chains. Our exper-
imental evaluation on real-world service chains shows that
MERIT accurately predicts the rehoming costs for the entire
chain by accounting for the network contention created by
simultaneously rehomed VNFs. Compared to the existing
practice of applying homogeneous rehoming actions for all
VNFs in the chain, MERIT reduces the chain rehoming
delay by about 26% on average (and up to 47%) and the
chain downtime by about 20% on average (and up to 49%).
Importantly, the chain rehoming costs incurred by MERIT
are almost always within 10% of the costs incurred by the
unrealistic but optimal clairvoyant (oracle) policy.

II. BACKGROUND AND OVERVIEW

Network service providers often rehome VNFs of the ser-
vice from one host to another in response to infrastructure
dynamics like hardware failures and hot-spots. In this section,
we first describe the different rehoming actions we consider for
MERIT, along with their pros and cons, especially with respect
to the action’s time-to-completion, or rehoming delay, and
the service connectivity downtime it induces; we collectively
refer to the rehoming delay or connectivity downtime as the
rehoming costs. Then, through an experiment on a real test-
bed, we illustrate how these rehoming actions may have a
different time-to-completion, or rehoming delay, for different
VNFs in the service chain, and may impact the service
connectivity downtime differently, thereby motivating the need
for a model-driven approach in MERIT. We next describe
the different rehoming actions we consider for MERIT, along
with their pros and cons, and then discuss the prior work
on the analysis and evaluation of different rehoming actions.

2

When analyzing the rehoming performance, we consider the
following metrics, collectively referred to as rehoming costs:
• Rehoming delay: This is the time to perform the rehoming

action, and represents the (resource) cost incurred by the
provider to rehome a VNF.

• Connectivity downtime: This is the time until the service
chain’s end-to-end connectivity is restored, and represents
the performance loss for the tenant due to rehoming.
Cloud platforms typically provide out-of-the-box mecha-

nisms like rebuild, migrate, etc., that help with rehoming; we
consider three such practical rehoming actions, as described
below. While variants of rehoming actions are possible, such
as rebuilding on a different host or migrating to the same host
or live migrating only a fraction of the memory state. our focus
is on determining the optimal VNF rehoming actions which
are practically used by service operators, from among the
available actions, and not on optimizing the rehoming actions
themselves. Nonetheless, our methodology is not specific to
the considered actions and can be applied to cases where
additional rehoming actions are available. We thus employ
the actions described above that are already available in
OpenStack. In the following, we refer to the VM prior to
rehoming as the “original” VM and the VM after rehoming
as the “rehomed” VM.
1) Rebuild1: This involves taking down the original VM and

rebuilding it from the VM’s image while retaining some
metadata (e.g., IP address and interfaces) [20]. Rebuild has
low rehoming delay, but it can only be used for stateless
VNFs, since the disk and memory state of the original VM
are not preserved, resulting in loss of state.

2) Cold migrate: This involves migrating a VM with its disk
contents [21]. By default, only disk contents are copied
to the rehomed VM. The in-memory state of the original
VM can be optionally restored on the rehomed VM by
writing to disk prior to migration. Thus, cold migrate
does preserve some state. However, it is a relatively slow
rehoming action as the rehoming delay under cold migrate
can be high, especially for a large disk size. and/or low
network bandwidth.

3) Live migrate: This action migrates an active VM instance
to a different host, and tends to induce minimal disruption
(connectivity downtime) to the hosted application [11].
However, live migration may incur variable rehoming de-
lay, depending upon many factors including the storage
configuration (shared vs non-shared), memory page dirty-
ing rate, etc. Live migration (using “pre-copy”) involves
a warm-up phase where memory pages are copied from
the source to destination host before starting the rehomed
VM, and a stop-and-copy phase where the original VM
is suspended and the remaining dirty pages are copied
over to the rehomed VM. Note that live migrate requires
shared storage to be feasible (Section III-C3). Live migrate

1The default OpenStack implementation only rebuilds within the same host;
we use a combination of delete and boot to allow rebuilding the VM on a
different host.

does not shut down the original VM during rehoming (thus
consuming the resources of both hosts) and migrates the
memory contents until a specified threshold. Live migration
can take a long time to complete, especially for applications
with a high page dirty rate [22]. In such cases, live
migration can be aborted via a timeout feature [23].

III. EMPIRICAL ANALYSIS OF REHOMING

Our problem statement is as follows: Given the various
rehoming actions, when a service chain needs to be rehomed,
which rehoming action should be employed for each VNF
in the chain to optimize rehoming costs? The “optimize”
here refers to minimizing the connectivity downtime and/or
rehoming delay, as specified by a user-provided objective or
utility function.

To help address the above question, we empirically analyze
the rehoming costs for different rehoming actions to under-
stand the trade-offs between them. Clearly, it is infeasible to
empirically analyze all possible VNF chains. Even for a single
VNF being rehomed, the empirical analysis is complicated
by the complex interactions between the different rehoming
actions and the cloud environment. For example, while rebuild
is relatively unaffected by the VNF disk size or available
bandwidth, cold and live migrate are affected by these features.
In the multi-VNF service chain setting (Section IV-D), the
problem of identifying the optimal rehoming action for each
VNF in the chain is further complicated by the fact that
the various rehoming actions, when executed simultaneously,
can create resource contention, potentially amplifying the
rehoming costs of each VNF. In this section, we start by
comprehensively analyzing a simple VNF chain under var-
ious parameter settings and then extrapolate our results, in
Section IV, to arbitrary settings and VNF chains. For our
empirical analysis, we measure (i) rehoming delay based on
the relevant timestamped entries in the OpenStack logs and/or
from the Nova status API [24], and (ii) connectivity downtime
by calculating the delay between successful pings from the
client to the server in the chain; this delay includes the time
to get console access to the VM. In general, the rehoming cost
can be expressed as a utility function in terms of these two
individual metrics.

A. Experimental setup

Our experimental test-bed comprises of several bare metal
servers with Intel E5-2683 CPUs and 256GB memory in
CloudLab (Clemson site) running OpenStack (Rocky release).
We deploy our service chains on VMs (running Ubuntu 18.04)
hosted on this test-bed. Figure 2 shows the experimental
setup along with the simple VNF chain used for empirical
analysis. Each VM has multiple NICs and IP forwarding
enabled in order to route traffic through the chain; static
routes are configured on each VM to properly route traffic.
The corresponding ports for these NICs are also configured
in Neutron [25] to allow traffic pass through [26]. For shared
storage, we employ GlusterFS (v4.1) as our shared network

3

Client Server

Operator Cloud

Switch

CloudLab Clemson

Controller

Nova
Keystone
Glance
Neutron

Compute 1

Nova

Compute 2

Nova
Gluster
Mount

Compute n

Nova

Gluster
Mount

Fig. 2: Illustration of our service chain used for empirical analysis
comprising a client VM, a switch VM, and a server VM. The VMs
are hosted via OpenStack on top of CloudLab physical servers.

filesystem over ext4 using a single brick Gluster volume to
avoid consistency issues.

B. Experimental methodology

We collect empirical data for analysis on a simple VNF
service chain consisting of a client VM, a switch VM, and
a server VM as shown in Figure 2, with ping traffic going
from client to server via the switch. We consider the client
and the server VM to be outside the provider cloud, and
only rehome the switch VNF under various configurations.
We analyze rehoming costs separately for both shared and
non-shared cloud storage.

For the empirical analysis in this section, we rehome the
switch VM under various configurations; we expect similar
results for other VMs as well, though the post-bootup process
may be different, depending on the VNF’s functionality.
VNF parameters. We experiment with image sizes of
250MB–3GB and disk sizes of 700MB–5GB (by adding soft-
ware and data). We consider different VM sizes (parameterized
by their memory capacity): 4GB (medium), 8GB (large), and
16GB (xlarge). We also vary the page dirty rate (PDR) by
running Memcached on the switch VM and Mutilate [27]load
generator on a different VM to send traffic to Memcached.
We vary the request rate and data store size for Memcached
to generate different data points for PDR and working set size,
respectively. To track PDR, working set size, and other relevant
features, we use a modified QEMU with additional profiling
capabilities [22].
Cloud Infrastructure parameters. We consider different
infrastructure parameters such as available network bandwidth,
VM CPU usage, and I/O contention. To study the impact
of available bandwidth on rehoming, we employ Wonder-
Shaper [28] to limit the bandwidth to 100-900Mbps; the
link capacity in our setup is 950Mbps. We vary VM CPU
utilization by modifying the request rate of Memcached; this
also impacts PDR. For I/O contention, we use stress-ng [29]
to generate different background I/O loads at the target host.
We use mpstat and iostat to measure I/O statistics such as
the mean and standard deviation of the I/O wait percentage,
the average I/O operations per second (IOPS), and the total
kilobytes read and written per second.

C. Empirical analysis of rehoming costs

We use the VNF chain shown in Figure 2 and experiment
with all three rehoming actions applied on the switch VM.
All results are based on the experimental setup described
in Section III-A; we report the results averaged across 4
runs. We now present our empirical results (key takeaways in
Section III-D), starting with the results under shared storage.

1) Analysis of rehoming delay
The markers in Figure 3 show our empirical results for the

rehoming delay of all three actions under shared storage. In
each case, we plot the rehoming delay as a function of one
of the parameters, and vary the other parameters to generate
different sets of data points (markers). The solid lines are our
modeling results, and will be discussed in Section IV. For
ease of presentation, we only show a few dimensions/features
in the 2-D plot, but discuss all relevant findings in text.
Figure 3(a) shows the rebuild rehoming delay as a function
of instance size, parametrized via the memory capacity of the
instance (MEM). We show results under a 1GB image size
and 335Mbps bandwidth; results are qualitatively similar for
other parameter settings. We see that the rehoming delay under
rebuild is quite small, almost always around 20s. We also see
that the rehoming delay is largely insensitive to the instance
size, and is only slightly impacted by the mean background
I/O load, with higher load contributing to higher rehoming
delay. This is likely because the background I/O load on
shared storage contends with the disk read and write operations
required for the booting process that are part of the rebuild
action on the target host. The other parameters we experiment
with, including network bandwidth, disk size, etc., did not
much affect the rebuild rehoming delay; this is to be expected
as there is no disk transfer under rebuild. We also did not find
any noticeable impact of other parameters, such as VM CPU
usage and page dirty rate, on the rebuild rehoming delay.

Figure 3(b) shows the cold migrate rehoming delay as a
function of disk size for different combinations of background
network bandwidth (BW) and instance size. We see a nearly
linear relationship between rehoming delay and disk size, and
find that delay increases as BW decreases. This is because,
under OpenStack, the source VM’s disk contents are copied
onto shared storage over the network before migration is
considered complete. The rehoming delay under cold migrate
can be quite high, as much as 700s, for larger disk sizes.
Other parameters did not significantly impact the cold migrate
rehoming delay, and are thus omitted.

Figure 3(c) shows the live migrate rehoming delay as a
function of PDR for different network bandwidths (BW).
While we also experiment with other feature values, we find
empirically that PDR and BW have a higher impact on delay.
As discussed in Section II, live migration does not migrate the
image or disk contents due to the shared storage requirement.
Instead, live migrate copies over the memory contents from the
original to the rehomed VM, including any pages that were
modified during the rehoming delay duration. To prevent live
migration from getting stuck, we set a timeout of 20 minutes;

4

0 5 10 15 20

Memory capacity, MEM (GB)

0

10

20

30
R

e
h
o
m

in
g
 d

e
la

y
 (

s
)

High background I/O

Moderate background I/O

Low background I/O

(a) Rebuild rehoming delay vs. instance capacity
for different background I/O loads.

0 1000 2000 3000 4000 5000 6000

Disk size, DSK (MB)

0

200

400

600

800

1000

R
e
h
o
m

in
g
 d

e
la

y
 (

s
)

Low n/w BW, medium instance

Low n/w BW, xlarge instance

Medium n/w BW, medium instance

Medium n/w BW, xlarge instance

High n/w BW, medium instance

High n/w BW, xlarge instance

(b) Cold migrate rehoming delay vs. disk size for
different instance sizes and background I/O loads.

0 8 16 24 32

Page dirty rate, PDR (kilo pages/s)

0

400

800

1200

R
e

h
o

m
in

g
 d

e
la

y
 (

s
)

High n/w BW

Medium n/w BW

Low n/w BW

(c) Live migrate rehoming delay vs. page dirty
rate for different network bandwidths.

Fig. 3: Empirical results for rehoming delay of rebuild, cold migrate, and live migrate under shared storage.

0 5 10 15 20

Memory capacity, MEM (GB)

0

50

100

150

200

C
o
n
n
e
c
ti
v
it
y
 d

o
w

n
ti
m

e
 (

s
)

High background I/O

Moderate background I/O

Low background I/O

(a) Rebuild connectivity downtime vs. instance
capacity for different background I/O loads.

0 1000 2000 3000 4000 5000 6000

Disk size, DSK (MB)

0

200

400

600

800

1000

C
o
n
n
e
c
ti
v
it
y
 d

o
w

n
ti
m

e
 (

s
)

Low n/w BW, medium instance

Low n/w BW, xlarge instance

Medium n/w BW, medium instance

Medium n/w BW, xlarge instance

High n/w BW, medium instance

High n/w BW, xlarge instance

(b) Cold migrate downtime vs. disk size for different
instance sizes and background I/O loads.

0 8 16 24 32

Page dirty rate, PDR (kilo pages/s)

0

4

8

12

C
o

n
n

e
c
ti
v
it
y
 d

o
w

n
ti
m

e
 (

s
)

High n/w BW

Medium n/w BW

Low n/w BW

(c) Live migrate connectivity downtime vs. page
dirty rate for different network bandwidths.

Fig. 4: Empirical results for connectivity downtime of different rehoming actions under shared storage.

this is more than the time it takes live migrate to complete
with a stop-and-copy phase duration of 5s [23]. We see that
the rehoming delay under live migration can be quite high for
moderate to high PDR, often exceeding the peak rehoming
delay under rebuild and cold migrate. This is because the
live migrate process has to continually copy pages as they
get dirtied. In fact, for high PDR, we see that live migrate
times out (shown as rehoming delay of 1200s in Figure 3(c));
thus, for high PDR, live migrate is infeasible. At low PDR, the
rehoming delay is in the 25–90s range (higher than rebuild but
lower than cold migrate). In terms of trend, the delay increases
with PDR; further, the delay also increases with a decrease in
network bandwidth.

2) Analysis of connectivity downtime
The markers in Figure 4 show our empirical results for the

connectivity downtime of all actions under shared storage. The
results in Figure 4 are from the same experiments as Figure 3,
and thus the VNF and system parameters are the same.

Figure 4(a) shows the connectivity downtime for the rebuild
action. We see that downtime follows the same trend as delay,
except that there is now a slightly linear relationship be-
tween downtime and instance size, and the downtime is more
sensitive to background I/O load. In general, the downtime
numbers for rebuild are in the 100–200s range, with higher
values for higher background I/O load. The downtime is higher
than delay under rebuild because restoring the connectivity
requires some post-boot processes to execute, such as network
configuration and host-ssh key generation (because in rebuild
the rehomed VM’s boot-up is a first boot). By contrast,
rehoming delay does not include these post-boot processes,

and is considered complete once OpenStack reports the rebuilt
VM as “Active” on the target host.

Figure 4(b) shows the connectivity downtime for cold
migrate. The trends are very similar to those in Figure 3(b).
For cold migrate, the downtime and delay values are not
very different, unlike rebuild; this is because both rehoming
costs include the time needed to copy the disk. Nonetheless,
downtime is typically higher under cold migrate than rebuild,
especially for larger disk sizes.

Finally, Figure 4(c) shows the downtime for live migrate.
In stark contrast to rebuild and cold migrate, the downtime
under live migrate is much shorter. While we see a loosely
linear correlation between downtime and PDR, the downtime
is less than 12s in all cases. This is because downtime only
includes the stop-and-copy phase wherein the source VM is
stopped and only the remaining dirty memory is copied to the
target VM. However, there is a caveat here. Since live migrate
times out under high PDR, the rehoming does not complete in
such cases; consequently, there is no downtime to be reported.

3) Analysis of rehoming costs under non-shared storage
The rehoming cost results for rebuild and cold migrate under

non-shared storage do not change significantly when compared
to shared storage. Note that live migrate is infeasible under
non-shared storage.

For live migrate under non-shared storage (known as block
live migrate), we find that the action time often times out,
as both disk and memory need to be transferred with ac-
tive dirtying. Similar conclusions have been made by prior
work [30], [15]. Further, the block live migrate implementation
in OpenStack is restrictive, only allowing the EXT storage

5

Memory capacity, MEM (GB) →

0 5 10 15 20

R
e

h
o

m
in

g
 d

e
la

y
 (

s
)
→

0

10

20

30

High background I/O

Moderate background I/O

Low background I/O

(a) Rebuild delay vs. memory
capacity for different I/O loads.

0 2000 4000 6000

Disk size, DSK (MB)

0

100

200

300

400

R
e

h
o

m
in

g
 d

e
la

y
 (

s
) High nw bandwidth

Medium nw bandwidth

Low nw bandwidth

(b) Cold migrate delay vs. disk size for
different network bandwidths.

Fig. 5: Empirical results for rehoming delay of rebuild and
cold migrate under non-shared storage.

Memory capacity, MEM (GB) →

0 5 10 15 20

C
o

n
n

e
c
ti
v
it
y
 d

o
w

n
ti
m

e
 (

s
)
→

0

50

100

150

High background I/O

Moderate background I/O

Low background I/O

(a) Rebuild downtime vs. memory
capacity for different I/O loads.

0 2000 4000 6000

Disk size, DSK (MB)

0

100

200

300

400

C
o

n
n

e
c
ti
v
it
y
 d

o
w

n
ti
m

e
 (

s
)

High nw bandwidth

Medium nw bandwidth

Low nw bandwidth

(b) Cold migrate downtime vs. disk
size for different network bandwidths.

Fig. 6: Empirical results for downtime of rebuild and cold
migrate under non-shared storage.

repositories and disallowing any attached volumes [31]. We
thus omit live migrate from the list of feasible rehoming
actions under non-shared storage.

Figures 5 and 6 show the rehoming delay and connectivity
downtime, respectively, for rebuild and cold migrate under
non-shared storage. With non-shared storage, we expect higher
rehoming costs for actions that require data movement, such
as cold and live migrate. We thus do not see a significant
difference between the rehoming costs for rebuild under shared
and non-shared storage.

For cold migrate, in Figures 5(b) and 6(b), we see a
nearly linear relationship between the rehoming costs and
disk size. This is because a significant amount of time during
cold migrate is spent in migrating the disk. However, unlike
for shared storage, we now see that the rehoming costs are
largely insensitive to network bandwidth. In our setup, the
cold migrate state transfer was unable to exploit the network
capacity, and was thus not much affected by the bandwidth.

D. Key takeaways

• While the delay is typically higher for cold migrate than for
rebuild (due to additional disk state migration under cold
migrate), the downtime can be higher for rebuild than cold
migrate, especially for smaller disk sizes. We see a similar
tradeoff under non-shared storage. This is because rebuild
necessitates post-boot (re)configuration, unlike cold migrate.

• Under shared storage, if live migrate does not time out (low
PDR), live migrate is the optimal choice for downtime.

• Under shared storage, even with negligible PDR, the rehom-
ing delay is typically higher for live migrate when compared
to rebuild. At moderate PDR, even cold migrate can result
in lower rehoming delay than live migrate.

• Under non-shared storage, live migrate is infeasible.

IV. MODELING THE REHOMING COSTS

This section first presents our modeling results for a single
VNF, and then, in Section IV-D, we show how MERIT
leverages the single VNF models to predict the optimal simul-
taneous rehoming actions for the entire service chain. We later
show, in Section V, how we leverage the single VNF models
developed in this section to accurately predict the optimal
rehoming actions for multiple VNFs in the service chain,
where the decision is complicated by the resource contention
due to simultaneous rehoming of VNFs.

A. Modeling methodology

Our approach to modeling the rehoming costs is to consider
a simple VNF under different configurations for training, and
build service agnostic models that are widely applicable. We
consider the simple client-switch-server VNF chain and focus
on modeling the rehoming costs for the switch VM, which
was analyzed in Section III.

1) Learning techniques
To build the rehoming cost models, we employ supervised

machine learning techniques. We employ multiple linear re-
gression (LR), support vector regression (SVR), and neural
networks (NN) to train our rehoming delay and connectivity
downtime models.
• Linear Regression (LR): is a statistical technique that

models the dependent variable (rehoming cost) as a linear
weighted combination of the independent variables [32].

• Support Vector Regression (SVR): finds a hyperplane that
minimizes the number of data points that lie beyond a certain
threshold (ε). SVR can use kernel functions to map the
input space to a higher dimensional feature space and can
thus perform non-linear regression as well [33]. We use the
Radial Basis Function (rbf) in our SVR models [34].

• Neural Networks (NN): is a learning algorithm that learns
how to best combine the features, possibly in a non-linear
manner, using adaptive weights, to estimate the dependent
variable. We specifically employ a single hidden layer in our
feed-forward network. We consider two different activation
functions for the hidden layer in our NN models: (i) sigmoid,
and (ii) rectified linear unit (ReLU). Sigmoid function is
a special case of logistic function with a range of [0,1],
and hence does not amplify the activations [35]. ReLU is a
function defined as the positive part of its argument with
range [0, ∞). An advantage of ReLU is that it greatly
accelerates the convergence of stochastic gradient descent
compared to the sigmoid function [36], [37]. For more
details, see Haykin [38].
2) Features used for model training
We use a different feature set for each rehoming action,

based on the exact mechanism involved in the rehoming and
based on our empirical analysis from Section III-C. However,
to model a given action, we employ the same features for all
learning techniques and rehoming costs (delay and downtime).
We now discuss the features for our model training and how

6

we obtain them; a listing of the features is provided in Table I.
Details of how we leverage the model and features at runtime
are discussed in Section IV-D.

For rebuild, we use the following features: (i) image size
of the original VM (IMG), (ii) instance size, denoted by its
memory capacity (MEM), (iii) available bandwidth (BW), (iv)
mean I/O wait time (IOµ), and (v) standard deviation of I/O
wait time (IOσ). The intuition for including these specific
features is that rebuild involves booting a new VM using
the image, and as we observed in our empirical analysis,
the instance size and I/O load can impact the rehoming cost
under rebuild. We also include system-level features, CPU
and BW, to investigate any impact they may have on the
rehoming costs. For training, we explicitly limit the network
bandwidth of the target OpenStack hypervisor that the VM
will be rehomed to, and we use this limit as the value for
the available bandwidth feature. When applying the model in
practice (testing), we estimate available bandwidth at runtime,
as discussed in Section IV-D.

For cold migrate, in addition to the above features, we also
use the disk size (DSK) since cold migrate involves moving
the disk contents. To capture I/O contention, we also use the
IOPS and the read and write kBps as features.

For live migration, there are prior works that have inves-
tigated the set of useful features for modeling [11], [22],
and so we leverage these results to finalize our feature set
as: (i) instance size (MEM), (ii) network bandwidth (BW),
(iii) page dirty rate (PDR), (iv) working set size (WSS), (v)
modified words per page (MWP), (vi) working set entropy
(WSE), and (vii) non-working set entropy (NWSE). For details
about these features, refer to Jo et al. [22]. The live migrate
specific features, PDR, WSS, MWP, WSE, and NMWSE, are
measured periodically, every second, and we use the most
recent measurements (just before rehoming) as the feature
values for training. To capture I/O contention, as before, we
also use the IOPS and the read and write kBps as features.
Note that live migration is more complex than the other
rehoming actions, and thus we require several features. The
intuition for including these features is to capture the memory
state transfer time under live migration, which is the only
state to be migrated since image and disk are on shared
storage. While additional features such as CPU usage and
memory utilization of source and destination hosts can also
be considered, we found that these features do not improve
model accuracy, and add to the complexity of the model.

The intuition for including these features is to capture the
memory state transfer time under live migration, which is the
only state that needs to be migrated since image and disk are
on shared storage; recall, from Section III-C, that under non-
shared storage, live migrate is not practical.

B. Modeling results for rehoming costs

Our models employ the empirical data collected in Sec-
tion III for training. We have about 400, 1600, and 1000 em-
pirical data points for rebuild, cold migrate, and live migrate,
respectively. In all cases we remove outliers, and in the case

Variable Description (with units)
IMG Image size (MB)
DSK Disk size (MB)

MEM Memory capacity of the VM (GB), used as a
(numerical) proxy for the VM instance size

CPU VM CPU usage (percentage)
BW Network bandwidth (Mbps)
IOµ Mean of (fractional) I/O wait time
IOσ Standard deviation of (fractional) I/O wait time
PDR Page dirty rate (pages dirtied/sec)
WSS Working set size (pages)
MWP Modified words per page (words/page)
WSE Working set entropy (bytes)

NWSE Non-working set entropy (bytes)

TABLE I: List of features used in our modeling.

Model Rebuild Cold Migrate Live Migrate
delay dtime delay dtime delay dtime

LR 4.2% 2.8% 5.6% 4.4% 92.6% 35.4%
SVR 4.1% 3.8% 11.2% 7.7% 27.8% 33.7%

NN sig 4.6% 2.0% 4.4% 3.7% 11.0% 34.6%
NN ReLU 4.3% 2.0% 4.4% 3.9% 13.0% 36.6%

TABLE II: 5-fold cross validation error for different modeling
techniques under shared storage.

Model Rebuild Cold Migrate
delay dtime delay dtime

LR 5.0% 4.7% 1.4% 1.6%
SVR 5.3% 2.6% 3.3% 2.8%

NN, sigmoid 5.6% 2.1% 1.1% 1.3%
NN, ReLU 5.4% 2.6% 1.1% 1.1%

TABLE III: 5-fold cross validation error for different modeling
techniques under non-shared storage.

of live migrate, we omit data points where live migrate times
out.

The average 5-fold cross validation errors for all rehoming
actions under all learning techniques for shared and non-shared
storage are shown in Tables II and III, respectively. In general,
we find that SVR and NN typically have higher accuracy than
LR, especially for cold migrate and live migrate; in fact, for
live migrate, LR has very poor accuracy, suggesting the need to
employ a non-linear model for predicting the rehoming costs
of live migrate. For rebuild, since the empirical data exhibits
a nearly linear relationship, LR performs equally well.

For rebuild, we find that the feature weights for instance
size and image size for our empirical data are negligible. For
cold migrate, disk size and bandwidth have significant weights.
For live migrate, PDR and bandwidth have significant weights,
whereas WSE and NWSE have negligible weights.

C. Final models employed for MERIT

Based on the final results in Tables II and III, we choose LR
models for rebuild and cold migrate rehoming costs. While LR
has slightly worse accuracy compared to other techniques for
cold migrate, LR provides intuitive, closed-form expressions
for the final models, and LR is quick to train. Further, the LR
model is quick to train; for our empirical data, we train our
LR (and SVR) model in about 0.4 ms; the NN models require
about 22–26 ms to train; note that these numbers scale with

7

the amount of data, and the number of neurons in the NN.
However, for live migrate, LR has poor accuracy, making it
an impractical choice for MERIT. similar observations about
the difficulty of modeling live migrate using linear regression
techniques were made by prior works [11], [22]. Instead, for
live migrate, we choose NN with ReLU activation function.
Note that, for live migrate, the downtime modeling accuracy
is not important as the downtime is almost always less than
12s (and thus superior to rebuild and cold migrate), except
when live migrate times out under high PDR, making live
migrate infeasible (see Section III-C2). The timeout event can
be predicted by comparing the NN rehoming delay prediction
with the timeout value (1200s, in our case).

The final LR models for rebuild and cold migrate are shown
as the solid lines in Figures 3(a), 3(b), 4(a), and 4(b). For live
migrate rehoming costs, the NN with ReLU model is shown
as the solid lines in Figures 3(c) and 4(c).

The lower modeling accuracy for live migrate is in agree-
ment with prior modeling efforts that reveal the difficulty in
modeling live migration time [11], [22], [39].

D. Modeling network contention when applying MERIT

To apply MERIT, we monitor all relevant VNF param-
eters, such as image size, disk size, available bandwidth,
page dirty rate, etc. Some of these parameters, such as page
dirty rate, are monitored periodically (up until the rehoming
action is invoked) as they are time-varying parameters. The
static parameters, such as image and disk size, can be easily
obtained from the hypervisor through Orchestration Wrapper.
VM deployment logs. At runtime, when the rehoming is
to be performed, we leverage the most recent monitoring
information as input to our rehoming delay and connectivity
downtime models from Section IV, and choose the optimal
rehoming actions for each VNF in the chain.

To get the optimal set of rehoming actions, MERIT gen-
erates the possible combinations of feasible actions for the
chain. Then for each combination, we use the learned models
to predict the rehoming delay and connectivity downtime for
each VNF, taking into account the resource contention created
by simultaneous rehoming actions. Then, a feature vector is
created for each VNF based on the VNF characteristics and
runtime infrastructure metrics (some metrics are estimated, see
Section IV-D), which is used as input for our learned models.
The models predict the rehoming delay and connectivity
downtime for each VNF in the combination as output, taking
into account the resource contention created by simultaneous
rehoming actions. The predictions are then used to calculate
the chain rehoming delay, R, and chain downtime, D, for
each combination. Finally, MERIT picks the rehoming actions
combination that is predicted to maximize or minimize a given
generic utility function, U(R,D); we use U(R,D) = R ·D as
an example utility function to be minimized in our evaluation.

Thus far we assumed that available network bandwidth
(BW) is a feature that can be easily obtained. At run-time, due
to simultaneous rehoming of VNFs in the chain, the available
network bandwidth (BW) is shared among them, and can be

under contention. Thus, BW for each VNF rehoming action
must be estimated at run-time when applying the rehoming
models. We predict BW online based on the number of
VNFs in the chain and the rehoming action being applied
for each VNF; we can also account for background traffic
by subtracting that amount from the total bandwidth.

Let the available network bandwidth at the host be B MB/s.
We can account for background traffic by subtracting that
amount from the available bandwidth. If the chain has n
VNFs on a host, then the available bandwidth for each will
be B/n, assuming they have the same amount of state to be
migrated. If the amount of state to be transferred is different,
then the bandwidth computation is more complex. Consider
a chain with two VNFs being rehomed, with the first VNF
requiring a state migration of x1 MB, and the second VNF
requiring a state migration of x2 > x1 MB. Then, assuming
fair sharing, we estimate BW for VNF 1 to be B1 = B/2
MB/s during its state migration time of T1 = x1

B/2 seconds.
For VNF 2, it has available bandwidth of B/2 for time T1
(during which it also migrates x1 MB of state) and bandwidth
B for time (x2 − x1)/B. Thus, state migration time for VNF
2 is T2 = T1 + (x2 − x1)/B = x1+x2

B seconds, and the time-
averaged BW is x2

T2
= x2·B

x1+x2
MB/s. In general, for a host with

n VNFs, with the VNFs indexed in increasing order of state
migration size x1 < x2 < . . . < xn, the state migration time
and BW for the ith VNF are:

Ti =
x1

B/n
+

x2−x1

B/(n−1)
+ .. =

∑i−1
j=1 xj + (n−i+1) · xi

B
(1)

Bi =
xi
Ti

=
xi ·B

x1 + x2 + . . . xi−1 + (n− i+ 1) · xi
(2)

Note that Ti is not the same as rehoming delay since the
latter may include additional delays due to the rehoming pro-
cess specifics (see Section III-C). The model training captures
these additional delays as a function of the features (see
Section IV-A2). The state size, xi, depends on the rehoming
action to be performed on VNF i. For rebuild, there is no
state transfer involved. For cold migrate, the disk contents are
transferred over the network. For live migrate, under shared
storage, the memory contents, iteratively dirtied pages, and the
final dirty memory during stop-and-copy phase comprise the
state to be migrated; the size of the state can be estimated
based on the PDR and available network bandwidth. Under
non-shared storage, additionally, the disk and image are also
transferred; the disk and image size can be obtained via
hypervisor logs.

V. SYSTEM DESIGN AND IMPLEMENTATION

Figure 7 shows the system implementation of our MERIT
approach. While MERIT includes an offline component which
constructs the rehoming action models using empirical data,
the figure only shows the online components. We implement
the system in Python and bash, consisting of ∼1200 lines of
open-source code [19].

8

MERIT

Scheduler

Inventory

Orchestration
Wrapper

Rehoming
Trigger

Update VNF

List of hosts

Predict cost

Modeling & Prediction
Module Predict Cost for each VNF in

combination

Identify actionsIdentify VNFs Identify
targets

Identify action combinations, target
hosts and optimize cost

Update models

Host Scheduler

Resource Monitor

Nova Interfacer
VNF Properties and Host Mappings

1
2 3

4

5

6

7

8

9

Confirmation
Monitor
status

Fig. 7: Illustration of our MERIT system implementation.

The NFV Infrastructure (NFVI) monitoring systems (e.g,
Ceilometer in OpenStack [24]) trigger a rehoming event
and specify the physical host(s) that need to be evacuated
in response to the event (1). From the Inventory, MERIT
identifies the VNFs that reside on these physical hosts, and
obtains their features, such as image size, disk size, PDR,
etc. (2), along with the feasible actions for each of the
VNFs (3); note that this information is kept up-to-date in
the Inventory through communication with the hypervisors
via the Orchestration Wrapper (4). Based on the obtained
VNF information, MERIT uses a Cartesian product to list all
possible rehoming action combinations. The Host Scheduler in
the Orchestration Wrapper selects target hosts for each VNF
that have the most spare resource capacity (such as available
host disk space or available host memory); more sophisticated
policies can be employed based on service/VNF provider
requirements. The selected host information is then sent to
the Scheduler, along with the monitored host bandwidth
information obtained via the Orchestration Wrapper (5). The
Scheduler then forwards this information, along with the list
of possible rehoming action combinations, to the Modeling
& Prediction Module (6), which in turn employs the trained
rehoming cost models (stored as sklearn [40] model objects) to
obtain predictions of the rehoming cost of each combination.

Once the Scheduler receives the predicted costs, it picks
the minimum-cost action combination to optimize a given,
user-specified, utility function, U(R,D), where R and D are
the rehoming delay and connectivity downtime of the chain,
respectively. Examples of such a utility function include a
weighted sum, U(R,D) = α·R+(1−α)·D (where the weights
are specified by the user depending on their relative importance
of R and D), or the product U(R,D) = R · D, which we
employ in our experimental evaluation. Since MERIT predicts
the utility value for all feasible rehoming combinations, the
minimum-cost choice from among these combinations will be
the (theoretically) optimal rehoming action combination.

Finally, the Scheduler communicates with Orchestration
Wrapper to call the Openstack Nova API to perform the
optimal rehoming for each VNF in a separate thread, and waits
for their completion (7). Upon completion, Scheduler sends a
confirmation back to the trigger (9) and directs the Modeling

& Prediction Module to update its cost models based on the
new data obtained during this rehoming run (8). We update
our rehoming cost models through retraining since sklearn [40]
currently does not support incremental (online) training.

VI. EVALUATION RESULTS

We now present experimental results for evaluating the ef-
ficacy of MERIT. For our experimental evaluation of MERIT,
we implement several VNF service chains which are built
using real-world reference implementations of the VNFs from
OPNFV [41]2. Figure 8 and 9 show the VNF service chains
used in our evaluation, These chains are representative of
common network functionalities:
1) Gateway-Internet Local Area Network (Gi-LAN) chain

comprises a client VM, packet gateway, firewall VM, IDS
VM, switch VM, stream transcoder VM (FFMpeg [42]),
cache VM (Apache Traffic Server [ATS] [43]), and a server
VM. This chain, illustrated in Figure 9, is representative of
a Gi-LAN and has two branches based on traffic type: (1)
video stream traffic that is transcoded by FFMpeg, and (2)
web traffic that is served through the ATS caching proxy.

2) Intrusion detection system (IDS) chain comprises a client
VM, switch VM, IDS VM (Snort [44]), and server VM, and
is representative of a network intrusion detection system.

3) Web caching chain: This chain comprises a client VM,
firewall VM, cache VM (Apache Traffic Server [ATS], a
caching proxy [43]), and server VM, and is representative
of a web caching functionality.

4) Firewall chain: This chain comprises a client VM, switch
VM, firewall VM, and server VM; thus, a client-switch-
firewall-server chain. In our experiments, the firewall VM
uses IPTables to enforce traffic rules.

For evaluation, we use VNF parameters (disk size, image
size, network bandwidth availability) that are different from
the training data used in Section VI.

We first describe our evaluation methodology and then
discuss how to use MERIT in practice. We then present our
model validation results and our evaluation results for MERIT.

2OPNFV is an Open source Platform under the Linux Foundation that
facilitates the development of NFVs.

9

Client ServerFirewallSwitch

(a) Firewall
chain

Client ServerIDSSwitch

Client ServerCacheFirewall

(b) Intrusion
detection
system chain

(c) Web caching
chain

Fig. 8: Service chains used in our evaluation. VNFs are based on
real-world reference implementations from OPNFV [41].

Switch

FirewallGateway

Server

FFMpeg Transcoder

Client

Snort

Apache Traffic Server

Fig. 9: Gi-LAN service chain used in our evaluation. VNFs are based
on real-world reference implementations from OPNFV [41].

A. Evaluation methodology

In our experiments for VNF chain rehoming, we focus on
the following chain-specific metrics:
• Chain rehoming delay: This is the sum of rehoming delay

for all VNFs in the chain that are being rehomed, and
represents the rehoming cost incurred by the provider.

• Chain downtime: This is the time until the service chain’s
end-to-end connectivity is restored, and is defined as the
maximum connectivity downtime across all VNFs.

With simultaneous rehoming of the entire chain, the rehoming
costs for a given VNF now depend on the rehoming actions for
the other VNFs in the chain as well, because of the consequent
network contention. Fortunately, our models already include
features to track this contention. We refer to rebuild, cold
migrate, and live migrate actions as RB, CM , and LM ,
respectively. Under our graybox approach, we consider that the
network provider knows about the nature of stateful VMs (see
Section II). For our chains, the stateful VMs are the firewall
VM (due to IPTables) and the ATS cache VM (due to cached
contents). For these stateful VMs, RB is not an option as
it will result in loss of disk state. For ATS, even CM is
not an option as the contents could be cached in memory.
For memory intensive VMs like IDS and FFMpeg, the page
dirtying rate can be very high; thus, LM (which will time out)
is considered infeasible for these VMs. We experiment with
all feasible rehoming action combinations for all VNF chains,
with the stateful VNF exceptions noted above. For example,
for the IDS chain, we consider 6 rehoming combinations, with
the switch VM possibly being rebuilt, cold migrated, or live
migrated, and the IDS VM being simultaneously cold migrated
or live migrated. When rehoming a chain, to avoid additional
connectivity downtime, we consider all VNFs of the chain
to be rehomed simultaneously; this mimics a real deployment

Chain Delay Downtime
B1

Downtime
B2

Downtime
avg

Product Cost
0

50

100

C
o

s
t

in
c
re

a
s
e

 c
o
m

p
a

re
d

 t
o

 O
ra

c
le

 p
o
lic

y
 (

%
)

0% 0% 0%
9% 10%

89%

40%

66%

41%

106%

0% 0% 0%

MERIT Homogeneous LM-all

Fig. 10: Percentage increase in cost, relative to the Oracle policy, for
MERIT and the best homogeneous policy for the Gi-LAN chain. Also
shown, for completeness, is the infeasible live-migrate all policy.

where the entire chain needs to be rehomed in response to
maintenance or failures. By employing the max function in the
definition of chain downtime, MERIT optimizes for end-to-end
connectivity downtime rather than per-VNF downtime local
optima such as for LM. The client and server VM are typically
outside the private cloud, so we do not rehome these VMs.
For the rehoming, we assume that the target host is known
(OpenStack decides the target host for migration); prior work
has considered the problem of where to migrate [45], [46],
which is orthogonal to our focus of determining the optimal
rehoming actions. All experiments are run on the experimental
setup described in Section III-A.
For each chain, we compare MERIT with the following:
• The Oracle policy applies the optimal rehoming actions

at each VNF. This is an unrealistic but useful comparison
baseline as Oracle knows the actual rehoming costs for
each rehoming action combination a priori. We “implement”
the unrealistic Oracle by experimenting with all feasible
combinations and then labeling the minimum-cost optimal
combination as the Oracle policy. Note that, by design, the
rehoming cost of Oracle is indeed the optimal cost. Also
note that the rehoming cost for MERIT may be worse than
Oracle since the MERIT-predicted optimal actions may not
be optimal in practice due to inaccuracies in predictions.

• The Homogeneous policy uniformly applies the same re-
homing action across all VNFs that need to be rehomed.
To implement this policy, we select the lowest cost feasible
rehoming combination that applies the same action (from
among RB, CM , and LM) for all VNFs to be rehomed.

B. Rehoming evaluation results

We start by evaluating the efficacy of MERIT’s rehoming
recommendations for the various VNF chains, using the two
chain-specific metrics detailed in Section VI-A. For each VNF,
we experiment with the feasible rehoming actions from among
rebuild (RB), cold migrate (CM), and live migrate (LM).

1) Rehoming the Gi-LAN chain
For the Gi-LAN chain, the Firewall, Snort IDS, FFMpeg,

and ATS VNFs are subject to rehoming while the gateway
and switch are fixed. For the stateful firewall VNF (due to
IPTables), RB is not a feasible option. Likewise, RB and
CM are infeasible for ATS (since contents could be cached
in memory) and LM is infeasible for memory intensive IDS
and FFMpeg VNFs. Under our graybox approach, MERIT

10

only considers the remaining 8 feasible action combinations
for the chain (CM and LM for firewall; RB and CM for
IDS and FFMpeg). We also experiment with a homogeneous
live-migrate all policy for better comparison. We use shared
storage and medium instance size (2 cores, 4GB memory)
for the above four VNFs, with 250MB image and 1GB disk
for Firewall, 1.6GB image and 970MB disk for IDS, 330MB
image and 700MB disk for FFM, and 850MB image and
500MB disk for ATS. We note that these configurations were
not part of the model training data.
Rehoming cost results: Figure 10 shows the percentage
increase in rehoming cost for MERIT and Homogeneous,
relative to the Oracle rehoming cost. All reported results are
averaged over 3 experimental runs. We consider the chain
rehoming delay, chain downtime, and the product of chain
rehoming delay and chain downtime (as an example of a
utility function U(R,D) = R · D). We also consider the
branch-specific chain downtimes for the video traffic (branch
B1) and web traffic (branch B2); the chain downtime is
the average of the branch-specific downtimes. As the Gi-
LAN chain constitutes two branches, there are two end-to-end
connectivity downtime metrics, B1 for the transcoder branch
and B2 for the web cache branch. Total cost is the utility
function defined cost, and in our case it is the product of
rehoming delay and averaged connectivity downtime of two
branches.

We see that MERIT is almost always within 10% of the cost
incurred by Oracle, and often has the same cost as Oracle. By
contrast, the Homogeneous policy incurs a substantially higher
cost for all metrics we consider, with an average cost increase
of about 68% across all metrics. For the Gi-LAN chain, the
Homogeneous policy employs CM for all rehomable VNFs
(fireall, IDS, FFMpeg), except ATS since ATS can only be live-
migrated. While various other combinations can be considered
for comparison, we note that MERIT’s cost relative to the
Oracle policy demonstrates our superiority.

For completeness, we empirically evaluate the (infeasible)
option of live-migrating all four rehomable VNFs; we refer to
this policy as LM-all in Figure 10. LM-all is not considered
in Homogeneous since LM is infeasible (times out) for IDS
and FFMpeg VNFs due to high page dirty rate. Since some
of the VNFs time out under LM-all, the rehoming never com-
pletes (infinite chain rehoming delay). While chain downtime
increase is shown as 0%, note that the rehoming action times
out and so the chain is never rehomed. Fortunately, MERIT is
able to predict that LM will indeed time out for the FFMpeg
and IDS VNFs, and so MERIT does not consider the LM-all
option.
Prediction accuracy: The superior performance of MERIT
can be attributed to its accurate rehoming cost prediction
models. Recall that MERIT predicts the rehoming cost for
all feasible action combinations and then executes the cost-
optimal action combination. Figure 11 shows the actual and
MERIT-predicted chain rehoming costs for all eight feasible
rehoming combinations for the Gi-LAN chain. We see that

0

50

100

150

200

250

C
h

a
in

 r
e

h
o

m
in

g
 c

o
s
t

-2% -7%

8%
-3%

11%
-4%

19%

12%

-8% -8% 6% 11% 9% -1%
-9%

13%

CM
fw

RB
ffm

RB
ids

LM
ats

LM
fw

RB
ffm

RB
ids

LM
ats

CM
fw

CM
ffm

RB
ids

LM
ats

LM
fw

CM
ffm

RB
ids

LM
ats

CM
fw

RB
ffm

CM
ids

LM
ats

LM
fw

RB
ffm

CM
ids

LM
ats

CM
fw

CM
ffm

CM
ids

LM
ats

LM
fw

CM
ffm

CM
ids

LM
ats

Obs. Delay Pred. Delay Obs. Downtime Pred. Downtime

Fig. 11: Observed and model-predicted chain rehoming costs under
various rehoming action combinations for the Gi-LAN chain. Num-
bers above the bars denote MERIT’s model prediction error.

Cost Metric Gi-LAN
Chain

IDS
Chain

Firewall
Chain (L)

Firewall
Chain (S)

Chain delay 7.7% 5.1% 12.2% 13.7%
Chain downtime 7.6% 8.2% 1.2% 10.7%

TABLE IV: Average absolute prediction error for the chain cost
metrics across all feasible combinations of each chain.

MERIT accurately predicts the costs in each case, with a
less than 10% prediction error in most cases. The average
prediction error for chain delay and downtime across all eight
combinations is 7.7% and 7.6%, respectively (see Table IV).

When optimizing for chain rehoming delay,
MERIT rightly predicts the optimal (thus, Oracle)
LMfw RBffmRBids LMats rehoming option; here, the
subscripts, fw, ffm, ids, and ats, refer to the rehomable
VNFs. If we instead employ the Homogeneous suggested
CMfw CMffm CMids LMats (since ATS can only be live
migrated), the chain delay cost would increase by 89%,
as shown in Figure 10. When optimizing for the average
(across both branches) chain downtime, MERIT predicts
LMfw RBffm CMids LMats as the optimal combination,
which is slightly different from the Oracle combination of
LMfw CMffm CMids LMats (due to non-zero prediction
errors, see Figure 11). Nonetheless, MERIT only incurs an
additional 9% downtime cost relative to Oracle, whereas
Homogeneous incurs an additional 41% downtime. Similar
observations can be made for the other metrics in Figure 10.

2) Rehoming the IDS (client-switch-IDS-server) chain
Figure 12(a) shows our results for the IDS chain, where

the switch VNF and IDS VNF are subject to rehoming; we
use shared storage for this experiment. We use a medium
instance size (MEM=4GB) for both switch and IDS VNFs,
with 919MB image and 700MB disk size for switch, and
1.7GB image and 510MB disk for IDS. Note that we did not
train using a small instance size or a less than 500MB disk
size during modeling. For the IDS chain, LM is infeasible for
IDS VNF (due to high PDR) but there are no constraints for
switch VNF. Consequently, due to its gray-box nature, MERIT
considers 2× 3 = 6 feasible action combinations, as opposed
to the 3 × 3 = 9 combinations a black-box approach would
consider. The IDS VNF uses Snort [44], which inspects every

11

RB
s
|RB

ids
RB

s
|CM

ids
CM

s
|RB

ids
CM

s
|CM

ids
LM

s
|RB

ids
LM

s
|CM

ids

0

50

100

C
h
a
in

 r
e
h
o
m

in
g
 c

o
s
t
(s

e
c
s
)

15%

9%
16%

10%

-1%

-1%

9%
-4%

24%

17%

8%

-1%

Obs. Delay Pred. Delay Obs. Downtime Pred. Downtime

(a) IDS chain

CM
fw

|LM
cache

LM
fw

|LM
cache

0

50

100

150

C
h
a
in

 r
e
h
o
m

in
g
 c

o
s
t
(s

e
c
s
)

-6%

-2%
-6%

19%

Obs. Delay

Pred. Delay

Obs. Downtime

Pred. Downtime

(b) Cache chain

CM
s
|CM

fw
RB

s
|CM

fw

0

50

100

150

200

250

C
h
a
in

 r
e
h
o
m

in
g
 c

o
s
t
(s

e
c
s
)

-15%

-9%1%
-2%

Obs. Delay

Pred. Delay

Obs. Downtime

Pred. Downtime

(c) Large firewall VNF

CM
s
|CM

fw
RB

s
|CM

fw

0

50

100

150

C
h
a
in

 r
e
h
o
m

in
g
 c

o
s
t
(s

e
c
s
)

-4%

-24%
21% 8%

Obs. Delay

Pred. Delay

Obs. Downtime

Pred. Downtime

(d) Small firewall VNF

Fig. 12: Observed and model-predicted results for the chain rehoming costs for (a) the IDS chain, (b) the cache chain, (c) the firewall chain
with large firewall VNF disk size, and (d) the firewall chain with small firewall VNF disk size.

Delay Downtime Product
0

50

100

150

200

C
o

s
t

in
c
re

a
s
e

 c
o

m
p

a
re

d

 t
o

 O
ra

c
le

 p
o

lic
y
 (

%
)

0% 0% 3%0%

98%

3%

123%

31%
51%

MERIT

Homogeneous RB

Homogeneous CM

(a) IDS chain

Delay Downtime Product
0

20

40

60

80

100

C
o
s
t
in

c
re

a
s
e
 c

o
m

p
a
re

d

 t
o
 O

ra
c
le

 p
o
lic

y
 (

%
)

0% 0% 0%

42%

9%

54%

MERIT

Homogeneous

(b) Large firewall VNF

Delay Downtime Product
0

20

40

60

80

100

C
o
s
t
in

c
re

a
s
e
 c

o
m

p
a
re

d

 t
o
 O

ra
c
le

 p
o
lic

y
 (

%
)

0% 0% 0%

77%

0%

66%

MERIT

Homogeneous

(c) Small firewall VNF

Fig. 13: Percentage increase in cost, relative to the Oracle policy, for (a) IDS chain, (b) firewall chain with large firewall VNF disk size,
and (c) firewall chain with small firewall VNF disk size.

incoming packet and writes to the intrusion log; this results in
high PDR, making LM infeasible. The switch VNF does not
have any constraints. We thus have 2× 3 = 6 feasible action
combinations, as opposed to the 3× 3 = 9 actions we would
have to consider with a black-box approach.

In Figure 12(a), the x-axis ticks are represented as
actions|actionids, where actions and actionids are the re-
homing action applied to the switch and IDS VNF, respec-
tively. We refer to rebuild, cold migrate, and live migrate
actions as RB, CM , and LM , respectively. The numbers
above the prediction bars for chain delay and chain downtime
show the prediction error percentage for MERIT. For both
chain rehoming delay and chain downtime, MERIT accurately
predicts the rehoming cost, with a mean error of 5% and 8%
respectively (Table IV). However, for the CMswitch CMsnort

action, our error is very high; this is because when both VNFs
are being simultaneously cold migrated, there is significant
network contention, which we are under-predicting with the
linear regression technique, despite our network contention
model in Section IV-D. For chain downtime, MERIT has
good prediction accuracy, with a mean error of 11%. For
the individual VNF-specific rehoming costs, MERIT’s average
prediction error is 13% and 16% for rehoming delay and
connectivity downtime, respectively.

When optimizing for chain rehoming delay, MERIT
accurately predicts the optimal rehoming combination of
RBsRBids (rebuild switch VNF and rebuild IDS VNF), thus
resulting in the same cost as Oracle and Homogeneous (Fig-
ure 13(a)). In fact, the predicted ordering of the combinations,

in terms of chain delay, is exactly in agreement with the empir-
ically observed ordering for chain delay. When optimizing for
chain downtime, MERIT again correctly predicts LMs CMids

as the best option. Instead, if we use the Homogeneous policy,
we would either pick RBsRBids or CMs CMids, which
would result in an increase in chain downtime of 98% and
31%, respectively. When minimizing the product of chain
delay and downtime, MERIT incorrectly picks RBsRBids as
the optimal, instead of the Oracle LMs CMids combination.
However, the misprediction error is small, thus incurring
only a 3% cost increase over Oracle. Across all feasible
combinations, MERIT accurately predicts the rehoming costs
with a mean prediction error of 5%–8%.

3) Rehoming the caching (client-firewall-cache-server)
chain

Figure 12(b) shows our results for the Web caching chain,
where the firewall VNF and cache server VNF are subject to
rehoming; we use shared storage for this experiment. We use a
medium instance size (MEM=4GB) for the firewall VNF with
a 250MB image and 1.7GB disk. For the cache server VNF, we
use another medium instance with 850MB image and 760MB
disk size. We use a medium instance size for both firewall
and cache VNFs, with 250MB image and 1.7GB disk size
for firewall, and 850MB image and 760MB disk for IDS. For
the caching chain, RB is infeasible for firewall As discussed
in Section VI-A, the firewall VNF relies on IPTables, which
are incrementally updated, making it infeasible to rebuild the
firewall VNF. For the cache server VNF, it is stateful (so
rebuild is infeasible) and the Apache Traffic Server caches
contents in memory, making CM infeasible as well. We thus

12

experiment with the remaining two combinations.
Our average prediction error for chain rehoming delay and

downtime across all cases is 3.8% and 12.5%, respectively;
note that the downtime prediction error for LMfw LMcache

is high since it is challenging to predict the small connectivity
downtime under live migrate, as discussed in Section IV.
Since the actual and predicted values are small (7s and 8s,
respectively), the modeling error is inflated.

When optimizing for chain rehoming delay, MERIT rightly
predicts the optimal LMfw LMcache rehoming option; simi-
larly for the chain downtime metric and the product of chain
rehoming delay and downtime metric, which have the same
optimal action of LMfw LMcache. Since rebuild is not a
feasible option for either VNF of this chain, we identify live
migrate as the optimal action for this shared storage scenario.

4) Rehoming the Firewall (client-switch-firewall-server)
chain

We now consider the Firewall chain, where the switch VNF
and firewall VNF are subject to rehoming. This time, we use
non-shared storage for this experiment, so the feasible actions
are RB and CM . As before, RB is infeasible for the firewall
VNF, resulting in two action combinations for the chain,
with cold-migrate–all being the Homogeneous combination.
We use a small instance size (1 core, 2GB memory) for the
switch VNF with a 250MB image and 400MB disk. For the
firewall VNF, we use a medium instance with 250MB image.
We experiment with two different disk sizes for the firewall
VNF in this chain, 2GB (Large) and 700MB (Small); the
corresponding results are shown in Figures 12(c) and 12(d),
respectively. Note that we did not train using a small instance
size.

When optimizing for chain rehoming delay under firewall
with large disk (Figure 13(b)), MERIT rightly predicts the op-
timal RBs CMfw rehoming option, achieving the same cost as
Oracle. If instead, the Homogeneous suggested CMs CMfw

was employed, the chain rehoming delay would increase by
about 42%. When considering the chain downtime or the
product of chain delay and downtime metrics, MERIT again
rightly predicts the optimal combination. By contrast, Homo-
geneous incurs a cost increase of 9% and 54%, respectively,
over MERIT, for the chain downtime and the product of chain
delay and downtime metrics.

When using the small disk for firewall VNF (Figure 13(c)),
MERIT rightly predicts the heterogeneous RBs CMfw action
as the optimal when optimizing chain rehoming delay, result-
ing in the same cost as Oralce. If instead the Homogeneous
CMs CMfw was employed, the chain rehoming delay would
increase by about 77%. When optimizing for chain downtime,
all three policies, MERIT, Homogeneous, and Oracle, pick
the optimal CMs CMfw combination. Finally, when optimiz-
ing for the product of chain delay and downtime, MERIT
again rightly predicts the heterogeneous RBs CMfw action
combination, achieveing the same cost as Oracle. By contrast,
Homogeneous incurs a 66% increase in product cost.

VII. RELATED WORK

Prior work on modeling rehoming costs has largely focused
only on live migration. Nathan et al. [11] perform a thorough
evaluation of existing models to predict VM live migration
time and propose a new model that takes into account impor-
tant factors such as the writable working set size (WSS) and
page dirty rate (PDR). Akoush et al. [13] provide simulation
models based on historical observations of page dirtying rate
in Xen-based VMs to predict the total live migration and
service interruption times. Wu et al. [14] develop regression
models that capture the impact of CPU resource availability
on the performance of live migration. MERIT’s modeling
of rehoming costs also considers rebuild and cold migrate,
which are viable alternatives to live migrate, and also takes
into account the underlying cloud storage framework. Further,
MERIT leverages the models to provide optimal rehoming
recommendations, that include live migration.

Wang et al. [47] provide virtual router migration as a
network management primitive allowing (virtual) routers to
move across physical nodes. Mistral [48] considers a model-
based approach to estimate the cost of single VM migrations
in the context of improving the power efficiency and resource
utilization in cloud infrastructures. We take a more holistic
approach, with information provided by the service, and model
different techniques for a wider range of rehoming actions
such as rebuild and migration with a focus on its impact
on the service chain. Mistral [48] optimizes the overall data
center utility by choosing adaptation actions such as increasing
the CPU allocation, migrating VMs, and restarting hosts.
Hence, Mistral may lead to sub-optimal decisions from the
perspective of each service chain. By contrast, we focus on the
rehoming actions for VNFs to optimize chain-specific metrics
such as rehoming delay and connectivity downtime. Wood et
al. [12] espouses a graybox approach for VM migration taking
into account OS and application-level statistics. Our graybox
rehoming involves simple user information such as the nature
of the VMs (stateful/stateless) in the chain.

Prior work on holistic models for service chains focus on
various factors that influence initial placement such as the
hardware and resource constraints [49], [50]. MERIT specifi-
cally focuses on identifying the (possibly heterogeneous) opti-
mal rehoming actions to be taken for service chain rehoming.
Prior work on improving the performance of specific rehoming
actions [15], [16], [17], [18] are orthogonal to our focus in
this report, which is on identifying the optimal rehoming
actions for a chain, from among available actions. Our model-
driven approach can be extended to incorporate other rehoming
actions, such as variants of live migrate and cold migrate.

VIII. CONCLUSION

This report identifies a practical problem in network
provider clouds – how to optimally rehome a VNF service
chain in response to hotspots, upgrades or failures. We demon-
strate the importance of considering multiple, alternative re-
homing actions, such as rebuild and cold migrate, in addition
to the existing de-facto option of live migrate. We empirically

13

analyze the rehoming costs of various rehoming actions and
identify the features which facilitate the modeling of rehoming
costs. Finally we present the design and implementation of
the MERIT system that leverages our models to rehome
service chains by estimating, at run time, the impact of single-
VNF rehoming on other simultaneous rehoming actions. Our
experimental evaluations on OpenStack using real-world VNF
chains highlight the superiority of MERIT over the existing
practice of applying the same rehoming action across all
VNFs, and also illustrates the importance of considering the
impact of one rehoming action on another.

ACKNOWLEDGMENT

This work was supported by NSF grants 1717588 &
1750109.

REFERENCES

[1] “Unraveling AT&T’s and Verizon’s Virtualization Vendors,”
https://www.sdxcentral.com/articles/news/unraveling-att-and-verizons-
virtualization-vendors/2016/08/.

[2] B. Han et al., “Network function virtualization: Challenges and opportu-
nities for innovations,” IEEE Communications Magazine, vol. 53, no. 2,
pp. 90–97, 2015.

[3] “First Responder Network,” https://www.firstnet.gov.
[4] R. Nathuji et al., “Q-clouds: Managing performance interference effects

for QoS-aware clouds,” in EuroSys 2010, Paris, France, pp. 237–250.
[5] H. Nguyen et al., “AGILE: Elastic Distributed Resource Scaling for

Infrastructure-as-a-Service,” in ICAC 2013, San Jose, USA, pp. 69–82.
[6] G. Ananthanarayanan et al., “Reining in the Outliers in Map-reduce

Clusters Using Mantri,” in OSDI 2010, Vancouver, BC, Canada, 2010,
pp. 1–16.

[7] A. Verma et al., “Large-scale Cluster Management at Google with Borg,”
in EuroSys 2015, Bordeaux, France, 2015.

[8] “Amazon Elastic Compute Cloud (EC2),” http://aws.amazon.com/ec2.
[9] “Google Cloud Platform,” https://cloud.google.com.

[10] “AT&T DataCenter locations,” https://www.business.att.com/solutions/
Service/cloud/colocation/data-center-locations/.

[11] S. Nathan et al., “Towards a comprehensive performance model of
virtual machine live migration,” in SoCC 2015. ACM, pp. 288–301.

[12] T. Wood et al., “Black-box and gray-box strategies for virtual machine
migration,” in NSDI’07, Cambridge, MA, USA, 2007.

[13] S. Akoush et al., “Predicting the performance of virtual machine
migration,” in IEEE/ACM MASCOTS’10, Miami, FL, 2010, pp. 37–46.

[14] Y. Wu and M. Zhao, “Performance modeling of virtual machine live
migration,” in IEEE CLOUD, Washington, D.C., 2011, pp. 492–499.

[15] H. Liu et al., “Live migration of virtual machine based on full system
trace and replay,” in ACM HPDC 2009. ACM, 2009, pp. 101–110.

[16] E. Park et al., “Fast and Space-efficient Virtual Machine Checkpointing,”
in ACM VEE ’11, Newport Beach, CA, USA, 2011, pp. 75–86.

[17] H. Jin et al., “Live virtual machine migration with adaptive, memory
compression,” in Proceedings of the 2009 IEEE International Confer-
ence on Cluster Computing and Workshops, New Orleans, LA, USA,
2009, pp. 1–10.

[18] P. Svärd et al., “Evaluation of Delta Compression Techniques for
Efficient Live Migration of Large Virtual Machines,” in ACM SIG-
PLAN/SIGOPS VEE 2011, Newport Beach, CA, USA, 2011, pp. 111–
120.

[19] M. Wajahat, “MERIT System Implementation with Openstack,” https:
//github.com/PACELab/merit system.

[20] Openstack Org. Nova Rebuild. https : / / docs . openstack . org /
python-novaclient/latest/cli/nova.html.

[21] ——. Migrate instances. https://docs.openstack.org/nova/queens/admin/
migration.html.

[22] C. Jo et al., “A Machine Learning Approach to Live Migration Model-
ing,” in SoCC 2017, Santa Clara, CA, USA, 2017, pp. 351–364.

[23] Openstack.org, “Configure live migrations,” https://docs.openstack.org/
nova/pike/admin/configuring-migrations.html.

[24] “Open source software for creating private and public clouds,”
https://www.openstack.org.

[25] Openstack Org, “Neutron: OpenStack project’s “network connectivity as
a service”,” https://docs.openstack.org/neutron/latest.

[26] “Allowed address pairs,” https://docs.openstack.org/dragonflow/latest/
specs/allowed\ address\ pairs.html.

[27] “Mutilate: high-performance memcached load generator,” https://github.
com/leverich/mutilate.

[28] B. Hubert et al., “WonderShaper: Command-line utility for limiting an
adapter’s bandwidth,” https://github.com/magnific0/wondershaper.

[29] “Stress-ng,” http://kernel.ubuntu.com/∼cking/stress-ng.
[30] “High availability of live migration,” http://superuser.openstack.org/wp-

content/uploads/2017/06/ha-livemigrate-whitepaper.pdf, 2017.
[31] “Configure live migrations,” https://docs.openstack.org/nova/pike/admin/

configuring-migrations.html.
[32] D. A. Freedman, The Regression Line. Cambridge University Press,

2009, ch. 2, p. 26.
[33] “Support Vector Machines and Kernel Methods,” https://www.cs.cmu.

edu/∼ggordon/SVMs/new-svms-and-kernels.pdf.
[34] R. Schaback, “A Practical Guide to Radial Basis Functions,” https://

num.math.uni-goettingen.de/schaback/teaching/sc.pdf.
[35] S. Hochreiter, “The vanishing gradient problem during learning recurrent

neural nets and problem solutions,” International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems, vol. 6, no. 02, pp. 107–116,
1998.

[36] A. Krizhevsky et al., “Imagenet classification with deep convolutional
neural networks,” in Advances in neural information processing systems,
2012, pp. 1097–1105.

[37] “Advantages of ReLU vs other Activation Functions,”
https : / / datascience . stackexchange . com / questions / 23493 /
why-relu-is-better-than-the-other-activation-functions.

[38] S. Haykin, Neural Networks: A Comprehensive Foundation, 3rd ed.
Upper Saddle River, NJ, USA: Prentice Hall PTR, 2004.

[39] H. Liu et al., “Performance and energy modeling for live migration of
virtual machines,” in Proceedings of the 20th international symposium
on High performance distributed computing. ACM, 2011, pp. 171–182.

[40] “scikit-learn: Machine Learning in Python,” https://scikit-learn.org.
[41] “Open Platform for NFV (OPNFV),” https://wiki.opnfv.org/display/

functest/List+Of+VNFs.
[42] “FFmpeg,” https://www.ffmpeg.org/.
[43] The Apache Software Foundation. Apache Traffic Server. http : / /

trafficserver.apache.org.
[44] Cisco. Snort - Network Intrusion Detection and Prevention System.

https://www.snort.org.
[45] D. Novakovic et al., “Deepdive: Transparently identifying and managing

performance interference in virtualized environments,” in ATC 2013, San
Jose, USA, 2013, pp. 219–230.

[46] J. Mars et al., “Bubble-Up: Increasing Utilization in Modern Warehouse
Scale Computers via Sensible Co-locations,” in MICRO 2011, Porto
Alegre, Brazil, 2011, pp. 248–259.

[47] Y. Wang et al., “Virtual routers on the move: live router migration
as a network-management primitive,” in ACM SIGCOMM Computer
Communication Review, vol. 38, no. 4. ACM, 2008, pp. 231–242.

[48] G. Jung et al., “Mistral: Dynamically Managing Power, Performance,
and Adaptation Cost in Cloud Infrastructures,” in ICDCS 2010, Genoa,
Italy, pp. 62–73.

[49] B. Addis et al., “Virtual network functions placement and routing
optimization,” in IEEE CloudNet 2015. IEEE, pp. 171–177.

[50] H. Moens and F. D. Turck, “VNF-P: A model for efficient placement of
virtualized network functions,” in CNSM 2014, Nov 2014, pp. 418–423.

14

