
Significantly improving networked applications using
congestion-aware transport modeling

Yi Cao, Aruna Balasubramanian, Anshul Gandhi

{yicao1, arunab, anshul}@cs.stonybrook.edu

Stony Brook University

Abstract
Given the growing significance of network performance, it

is crucial to examine how to make the most of available

network options and protocols. We propose ECON, a model

that predicts performance of applications under different

protocols and network conditions to scalably make better

network choices. ECON is built on an analytical framework to

predict TCP performance. Unlike existing models that make

limiting assumptions about packet loss, ECON infers a rela-

tionship between loss and congestion using empirical data.

The empirical relation drives an online and dynamic analyti-

cal model to predict TCP performance. ECON then builds on

the TCP model to predict latency and HTTP performance.

Across three wired and one wireless network, our model out-

performs five alternative TCP models. We show how ECON
builds on the TCP model to (i) accurately predict latency

for transferring data of a given size between a client and

server, (ii) easily and scalably choose between HTTP/1.1 and

HTTP/2 given a workload and network condition, and (iii)

determine the best data transfer path in a cloud deployment

among paths with different network characteristics.

1 Introduction
The performance of most Internet and data center appli-

cations, including Web servers [5, 6], multi-tier cloud ser-

vices [64, 74], and big data processing applications [27], de-

pends critically on the underlying network. A major chal-

lenge for network practitioners is choosing the right network

settings among different available options.

The problem is that the right choice is not always obvious.

For example, a Web service provider must choose between

multiple application layer protocols: HTTP/1.1 (with varying

number of connections) versus the relatively new HTTP/2

protocol [39]. Prior work has shown that the choice between

HTTP/2 and HTTP/1.1 is not straightforward [73]. Likewise,

data center operators must choose between network paths

that have different round trip times (RTT) and loss rate char-

acteristics. The choice is complicated as both factors impact

performance in different ways

However, empirically evaluating all possible options under

different workloads and network environment conditions

is infeasible. Worse, making the wrong choice can severely

impact application performance, by as much as 4.5×, as we
show in §6.

In this paper, we present ECON, an accurate model-based

and measurement-based approach to systematically and scal-

ably compare network choices. The performance of higher-

layer applications depends heavily on the performance of

the underlying transport layer, especially TCP [73]. Our key

idea is to first analytically model the underlying TCP perfor-

mance, and then use this as the building block for ECON.
Unfortunately, modeling TCP performance in today’s net-

works is non-trivial. TCP performance is tied to network

congestion, which in turn is dynamic and cannot be easily

captured by analytical models. Existing TCP models [19, 22,

24, 57] assume either that congestion is a constant or that

it follows a known distribution, which leads to inaccurate

models (§5). To further exacerbate the problem, the conges-

tion in the network depends on external factors, including

cross traffic and intermediate router buffers, but end-points

have little visibility into these factors.

ECON builds an analytical TCP model, but augments the

analysis with real-time empirical measurements to account

for network congestion
1
. Congestion control algorithms typ-

ically regulate TCP throughput based on the occurrence of

losses [3, 35]. ECON thus uses empirical data to infer the rela-
tionship between loss rate and congestion window (cwnd),

where cwnd is the amount of data sent in one RTT. Im-

portantly, by only relying on observations of end-to-end

performance, ECON is able to capture the effect of competing

traffic without requiring explicit information about the cross

traffic or the intermediate routers, which is hard to obtain.

The core of our TCP modeling approach is to estimate the

amount of data transferred between loss events. By leverag-

ing the cwnd evolution dictated by the underlying congestion

control algorithm, and using online information to track how

loss rate depends on cwnd, ECON accurately predicts the TCP
throughput in the next interval. In this paper, we derive the

model for TCP CUBIC [35], which is the default TCP vari-

ant on Linux and Mac OS, and also show how our model

can be extended to TCP Reno [3]. Further, ECON explicitly

models the slow-start phase of TCP, unlike most existing

models [19, 22, 24, 57], and is thus able to accurately predict

the performance of short flows.

ECON adapts to variations in real-world network conditions
by using a sliding-window approach to update its empirical

1
Hence the name ECON model that stands for Empirically-Augmented Con-
gestion Aware Network Model.

inputs. Further, by capturing the effect of network conges-

tion, ECON can accurately model the performance of parallel
TCP connections.

We build on ECON’s TCP model to predict the performance

of HTTP/1.1 and HTTP/2. To this end, ECON extends the

continuous flow model derived for TCP to finite flows, since
HTTP applications work with finite, discrete objects. Be-

cause ECON models parallel TCP connections, it can accu-

rately compare the performance of HTTP/1.1 (which uses

parallel connections) and HTTP/2 (which multiplexes re-

quests on a single connection). We also build on ECON’s TCP
model to predict the data transfer latency for any flow.

ECON is light-weight and practical. The ECON daemon at

the sender periodically collects empirical data from existing

flows. Given a set of network choices during runtime, ECON
predicts the performance for the different choices online.

Our goal is to model network performance under existing

choices to empower practitioners, and not to develop new

TCP or HTTP variants or to debug network performance

based on offline analysis.

We rigorously evaluate ECON’s TCP model with over 700

hours worth of experiments spread over several months

across (1) three different wired networks, including those

within and across different Azure public cloud sites, (2) a

wireless network on the US East Coast, and (3) under dif-

ferent TCP variants (CUBIC [35] and Reno [3]). We com-

pare ECON with five alternative models—the classical PFTK

model [57], two other analytical models [22, 24], and two

history-based models [36]. Our results consistently show

that our modeling error is substantially lower than other

models, often by 65%, even under dynamic network con-

ditions. Our median throughput modeling error is 8%–16%
across all experiments.

For Web applications, ECON predicts the latency of the

HTTP/1.1 and HTTP/2 with an average error of 3% and 7.5%

respectively . Importantly, ECON accurately predicts the work-
load and network conditions under which HTTP/2 outper-

forms HTTP/1.1 and vice-versa (see §6), without requiring

exhaustive experimentation, unlike prior work [73].

Finally, we show how ECON can help choose the best data

transfer path in a cloud deployment, among paths with vary-

ing RTT and loss rate characteristics. We find that pairs of

paths with the same ratio of RTT and loss rate can still ex-

hibit vastly different gains in throughput, suggesting that

empirically derived rules-of-thumb can lead to significant

loss in performance. By contrast, ECON accurately predicts

the performance for any connection, allowing practitioners

to efficiently choose among available data transfer paths.

2 Background and Motivation
Transmission Control Protocol (TCP) is the widely used pro-

tocol in the transport layer [26]. This section provides an

overview of TCP and motivates the need for a new TCP

modeling framework.

Figure 1. TCP CUBIC congestion window size (cwnd) evolution

as a function of time. In the slow-start phase, cwnd doubles until the

slow-start threshold is reached. After this, cwnd increases according

to a cubic function in Eq. (1). Upon a loss, cwnd is reduced by a

multiplicative factor.

2.1 Background on TCP
One of the key features of TCP is congestion control. If the

TCP sender sends too many packets, the intermediate router

buffers overflow leading to packet loss. If the TCP sender

sends too few packets, the network is under-utilized. TCP

regulates the amount of data it sends in one round trip time

(RTT) using the congestion window or cwnd parameter.

TCP typically starts in the slow-start phase where cwnd
is increased exponentially until a slow start threshold is

reached or a loss occurs. Then, TCP switches to congestion-
avoidance phase. In this phase, most TCP variations [2, 3, 35]

increase cwnd less aggressively, until there is a loss. The

exact cwnd regulation depends on the TCP variant in use,

but the rise and fall of cwnd is periodic.

Figure 1 shows the evolution of cwnd over time (in terms

of RTTs) under TCPCUBIC [35] for the SouthEast testbed (see
§5. After slow-start, TCP increases the congestion window

via the equation:

cwndcubic = C(t − K)3 +Wmax , (1)

whereC and K are constants, t is the elapsed from the previ-

ous packet loss, andWmax is the cwnd size just before the

last packet loss. When a loss occurs (as indicated by triple

duplicate acknowledgements) the cwnd drops by a multi-

plicative factor of (1 − β), with 0 < β < 1. If the loss occurs

due to timeout, which is considerably rare, TCP goes back

to slow start phase.

A popular approach is to use an Additive Increase, Multi-

plicative Decrease (AIMD) algorithm to regulate cwnd. The

algorithm conservatively increases cwnd using an additive

factor in each round. But when a loss occurs, it rapidly re-

duces cwnd using a multiplicative factor. For example, TCP

Reno [3] increments cwnd by 1 in each RTT, and drops cwnd

by a factor of 2 upon a loss.

2.2 Overview of existing analytical models
Researchers have developed analytical models to character-

ize TCP throughput (and/or latency) as a function of various

network parameters [13, 19, 22, 24, 53, 57], starting with the

classical PFTK model [57]. These existing analytical models

2

focus on TCP Reno [3], and all but one model focus only on

the congestion avoidance phase.

2.3 Limiting assumptions of existing models
Existing models for TCP performance [19, 22, 24, 53, 57,

58] make several assumptions that are not valid in practice,

including:

1. Packet losses are independent and the loss probability is
constant. An important assumption that the existing mod-

els [13, 19, 22, 24, 53, 57] make is that loss rate can be

modeled analytically, either as a constant or as some dis-

tribution that is known a priori, e.g., Poisson.

Unfortunately, this assumption is false. Figure 2 shows

the empirical relationship between loss probability and

cwnd for a real-world testbed (for more details, see §3.2).

The loss probability certainly depends on the congestion

window size and is not a constant.

Since loss and cwnd are assumed to be independent, a

corollary is that TCP can keep adding more parallel con-

nections (and increase cwnd) without affecting losses.

Clearly this is not true, and our empirical results in Fig-

ure 2 show the effect of the number of parallel connections

on loss. This incorrect assumption is especially problem-

atic when comparing HTTP/1.1, that uses parallel TCP

connections, and HTTP/2 which only uses a single TCP

connection.

2. Ignoring the starting congestion window size. The starting
congestion window size varies across flows, especially

when TCP connections are reused. However, existing

models assume that cwnd values just before a loss are

identically distributed. While the effect of the starting

congestion window is amortized for bulk transfers, the

impact can be significant for short data transfers (see §5.4

and §7.2).

3. Ignoring dynamic network conditions. Existing analytical
approaches typically focus on static network conditions

where the parameter values, such as loss probability, are

assumed to be stable. However, this is not true in prac-

tice [21, 36, 40, 71].

These limiting assumptions also make these models inac-

curate in practice (see §5), motivating the need for a better

modeling framework.

3 ECON TCP Model
This section presents the core of ECON–an accurate, congestion-
aware TCP throughput model. ECON combines an analytical

model with empirical data on network congestion. By doing

so, ECON removes the limiting assumptions made in prior

models. The TCP model is the foundation for application

layer modeling that we discuss in the next section.

3.1 Model intuition
We first describe a high-level overview of the ECON TCP

model. Figure 3 illustrates the evolution of cwnd under TCP

CUBIC [35] during the congestion-avoidance phase. We

0 200 400 600 800 1000
Congestion window size (cwnd)

0

0.3

0.6

0.9

1.2

Lo
ss

 p
ro

ba
bi

lit
y

(p
)

10-4

0

0.3

0.6

0.9

1.2

10-3

1 conn
6 conn

Figure 2. Empirical results for loss probability (p) vs. congestion

window size (cwnd) for Northeast under TCP CUBIC. The figure

shows that the relationship between loss and cwnd also depends

on the number of parallel connections. The loss rate for 6 parallel

connections shown in red.

model the throughput for this congestion-avoidance phase

and then model slow-start separately (§3.5).

ECON leverages the periodicity of the congestion window

behavior at steady state to predict throughput of the current

triple duplicate period. The triple duplicate period (TDP) is

defined as the period between a starting congestion window

and the first loss, indicated by triple duplicate acks. Dur-

ing this period, the congestion window rises and then falls

abruptly at the end, due to a loss.

The throughput of a TDP can be estimated as the amount

of data sent during the period divided by the length of the

period. For example, starting from a starting congestion win-

dow scwnd in Figure 3, the throughput is a function of the

number of packets sent between scwnd andWmax and the

length of the TDP.

The key challenge is in predicting when the loss will occur.

Unlike prior work, ECON does not assume that loss rate is

constant. In fact, as indicated in Figure 2, the loss rate will

change at each point in the TDP curve because the loss rate

depends on the congestion window size. To this end, ECON
takes as input (i) the empirical relationship between loss rate

and cwnd, and (ii) the starting congestion window value,

to estimate the expected number of packets before the loss

occurs. The throughput then is a function of the number of

packets sent before a loss.

Below we describe how we obtain the relationship be-

tween loss rate and cwnd, and the ECON analytical TCP

model.

3.2 Empirical relation between cwnd and loss rate
To derive the relationship between loss probability, p, and

cwnd, we monitor the cwnd values of existing TCP flow(s)

andmark the cwndswhere loss occurs. Losses can be inferred

based on the drop in cwnd values and the deterministic

nature of the TCP window evolution.

p(cwnd) is the loss probability at cwnd and is estimated as

the number of losses recorded at cwnd divided by the total

packets sent at that cwnd. Some congestion windows may

not be encountered during a monitoring period. In that case,

3

Figure 3. Illustration of cwnd evolution for CUBIC. The ECON

TCP model estimates the number of packets sent before the first

loss after a starting congestion window (e.g., the area under the

curve from scwnd to Wmax) and divides it by the time to first

loss (marked TDP) to estimate throughput. Different from existing

models, ECON does not assume that the loss rate is constant. Instead,

ECON empirically determines loss rate as a function of cwnd.

we set the loss rate at the cwnd to be the average loss across

all cwnds. For all congestion windows beyond the maximum

encountered cwnd, we set the loss rate to 0.

Since we infer the function p(cwnd) by observing losses at

the end point, we do not need to specifically model the effect

of queue management techniques such as RED [16, 54].

p(cwnd) relationship for real-world networks: Figure 2
shows the empirically obtained p(cwnd) curve based on one

hour of monitoring under Northeast under TCP CUBIC. Not

only does p depend on cwnd, but the relationship depends

on the number of parallel connections.

The p(cwnd) relationship is a U-shaped curve and not
monotonic. The loss rate initially decreases with an increase

in cwnd, but then the relationship is reversed due to con-

gestion. At the left side of the curve, the cwnd drops under

poor network conditions because of multiple losses. Thus,

conditioned on the fact that the current cwnd is small, we

can infer that the network conditions is poor and loss rate

is high. We obtain a similar U-shaped curve in all the other

network setups in our experiments, including those over

WiFi (not shown here for brevity).

Parallel TCP connections: The p(cwnd) relationship also

depends on the number of parallel connections as the band-

width is shared between more connections. Figure 2 shows

the difference in the p(cwnd) relationship for 1 and 6 parallel

connections. In our experiments, we capture the empirical

relationship p(cwnd, npc), where npc is the number of paral-

lel connections by tracking the losses at different congestion

window sizes across connections.

3.3 Modeling TCP CUBIC throughput
We now describe our TCP throughput modeling approach

for TCP CUBIC, which is the most widely used TCP variant,

being the default version on Mac OS and Linux.

ECON takes as input the empirical p(cwnd, npc) relation-

ship and the starting congestion window scwnd. Then, the

TDP Triple Duplicate Period

cwnd congestion window size

scwnd starting congestion window size

npc # of parallel connections.

N random variable denoting # of packets sent in a TDP

M random variable denoting # of packets before loss

is detected

X random variable denoting # of RTTs in a TDP

p(x) loss probability at congestion window size x .

Wi size of the congestion window before ith loss

Table 1. Parameters and terminology used in this paper.

throughput B is given by

B(scwnd,p(cwnd,npc)) = E[N]/((E[X] + 1) · RTT), (2)

where N denotes the number of packets sent in a TDP and

X denotes the number of RTTs until the first loss is detected.

The total throughput is obtained by summing the through-

puts of all parallel connections.

The goal now is to derive N and X which depends on

the inputs, scwnd and p(cwnd,npc), and the cwnd evolution

determined by the CUBIC congestion control algorithm.

Let M denote the index of the first lost packet; (N-M) is

simply the number of packets sent after the first loss occurs

but before it is detected. We first derive the expected number

of packets before the first packet loss, E[M] and then use

it to derive the expected number of packets sent in a TDP,

E[N].

Deriving M, the index of the first packet loss :
The expected number of packets before the first packet

loss, E[M] =
∑

i i · Pr (M = i), where Pr (M = i) is the

probability loss occurred at packet i ..
When there is no loss, the cwnd increases every RTT

according to Eq. (1). For now, let npc = 1 and the time corre-

sponding to the beginning of this TDP be t0 = 0.

The probability that the very first packet is lost is simply

the probability that a loss occurs at the starting congestion

window scwnd; thus, Pr (M = 1) = p(scwnd). The probability
that the first loss is at the second packet is similarly given

by Pr (M = 2) = (1 − p(scwnd)) · p(scwnd). Thus, for any ith

packet sent in the first congestion window (of size scwnd),

we have Pr (M = i) = (1 − p(scwnd))i−1 · p(scwnd).
If the first loss happens after the first congestion window,

we have to take into account the change in loss probability,

since loss depends on the congestion window size. In general,

if the loss happens at themth
packet of the nth congestion

window, we have

Pr (M) =
©«
n−1∏
j=1

(1 − p(cwndj))
cwndj ª®¬ · (1−p(cwndn))m−1 ·p(cwndn),

where cwndj is the cwnd in the jth RTT (cwnd1 = scwnd).
By conditioning over M and generalizing to npc parallel

connections, we get:

4

E[M] =

∞∑
i=1

i ×
©«
i−1∏
j=1

(1 − p(cwndj ,npc))
ª®¬ × p(cwndi ,npc) (3)

Deriving N, the number of packets sent in a TDP: The
number of packets sent in a TDP, N, is the number of packets

sent before a loss is detected (M) except the lost packet, and

the additional packets sent before the loss is detected by the

sender (one RTT). We thus have:

E[N] = (E[M] − 1) + cwndE[X], (4)

where E[X] is the expected number of RTTs between scwnd

and the first loss. We use a similar approach to derive E[X]

as we did for E[M] (see Appendix A). The intuition is that

each RTT corresponds to one congestion window.

Based on the E[N] and E[X] we can obtain the throughput

B according to Eq. (2). In §4.3 we describe how we estimate

the bandwidth in practice.

3.4 Extension to TCP Reno
The above model can be extended to other TCP variants. We

consider TCP Reno as one example. Under Reno, the cwnd

increases by 1 each RTT and decreases to half the value in

the event of a loss.

As before, the cwnd evolution has a repeating pattern, so

we can focus on an arbitrary TDP to estimate the throughput.

Our modeling approach for Reno (see Appendix A) is similar

to CUBIC, except that the cwnd evolution that dictates the

p(cwnd) function and the derivation of E[M] and E[N] is

now based on Reno’s AIMD algorithm.

3.5 Modeling TCP Slow start
Similar to the congestion avoidance phase, the estimated

throughput in the slow start phase is a function of (a) the

estimated number of packets sent in slow-start before a loss

occurs or the slow-start threshold is reached and (b) the

evolution of cwnd during slow start. The throughput during

slow start is then

E[Bs] = E[Ns]/((E[Xs] + 1) × RTT) (5)

where Ns is the number of packets sent during slow start

before TCP switches to congestion avoidance phase and Xs
is the length of the slow start phase.

Let the cwnd at the beginning of slow start be icwnd (10,

in our setup when initiating a new connection). Then, by the

cwnd evolution during slow-start, for the kth RTT, cwnd =
icwnd × 2

k−1
since cwnd doubles every RTT. If there are npc

parallel connections, then the loss probability for any packet

in this RTT is p(icwnd × 2
k−1,npc). Ns , the expected number

of packets before a loss is estimated using this loss probability.

We use these two parameters to derive an expression for

expected slow-start throughput. See Appendix for a formal

derivation for the parameters in Eq. (5).

(a) HTTP/1.1 creates parallel

TCP connections.

(b) HTTP/2 multiplexes over a

single connection.

Figure 4. HTTP/1.1 versus HTTP/2.

4 ECON
The TCP modeling is the building block over which we build

ECON’s application layer prediction. ECON is a practical, on-
line, model that can adapt to dynamic network changes.

4.1 Modeling latency
Our first step towards application-layer modeling is to model

the latency of a TCP flow. Consider data of size x to be trans-

mitted at time t on a single connection; we extend this to

multiple connections in the context of HTTP next. We es-

timate the latency as a function of throughput. If the data

transfer is part of an existing flow, then we set scwnd in the

equations to be the congestion window size at that time, say

cwndt ; else, we use our slow-start model (see §3.5) to deter-

mine cwnd . The throughput is given by Eq. (2) and Eq. (5).

Finally, the latency to transfer data of size x is estimated as

x ·RTT /(B ·MSS), whereMSS is the maximum segment size.

4.2 HTTP modeling
Both HTTP/1.1 and HTTP/2 work over TCP. In both cases,

the client sends an HTTP request for an object and the server

sends an HTTP response with the requested object. We ex-

tend our (continuous flow) TCP model to HTTP by consid-

ering finite flows since HTTP applications work with finite,

discrete objects. To this end, our HTTP model proceeds in

epochs, where the length of each epoch is the estimated

RTT. Inputs to our model are the size and number of objects

being requested and, for HTTP/1.1, the number of parallel

connections (npc in our model).

The difference between HTTP/1.1 and HTTP/2 is in how

the TCP connections are leveraged. For each request, HTTP/1.1

creates a new TCP connection or reuses an existing idle con-

nection. To improve performance, clients often create parallel

TCP connections to request multiple objects simultaneously.

Figure 4(a) illustrates HTTP/1.1 with parallel connections.

Most Web browsers limit the number of parallel connections

per server to six [75].

HTTP/2 [39], on the other hand, multiplexes multiple

HTTP requests and responses in a single TCP connection

rather than creating multiple connections. HTTP/2 refers to

multiplexed object requests as streams and has a limit on the

number of streams [14]. Figure 4(b) shows HTTP/2 where

the payload is multiplexed over a single TCP.

5

HTTP/1.1 model: In the first epoch, say starting from time

ts , one object is assigned to each of the npc parallel TCP con-

nections; for the purposes of modeling, the assignment order

of objects is not important. We then use our per-connection

throughput estimation from Eq. (2), along with npc and

the p(cwnd) empirical relationship to predict the number

of epochs needed to complete the first (or fastest) transfer.

After this transfer, the next outstanding object is assigned

to this connection in the subsequent epoch; if there are no
outstanding objects, we modify the number of parallel con-

nections and use the corresponding p(cwnd, npc) function.

This process continues until all objects are transferred, say

at epoch ending at time te . The predicted latency is then

(te − ts).

HTTP/2 model: In the case of HTTP/2, we only have one

connection. Further, we can treat all outstanding objects as

one combined request that must be transferred over the one

connection. We thus use our throughput model from §3.3

to predict the transfer time. Unlike HTTP/1.1, no RTTs are

wasted when a new stream is added to replace a completed

stream in HTTP/2.

4.3 Using the model in practice and adapting to
network changes

To use the model in practice, one first empirically obtains

the p(cwnd) function as described in §3.2. We can piggyback

the estimation of p(cwnd) and other model parameters using

existing TCP flows between a (sender, receiver) pair.

In practice, the p(cwnd) relationship can change dynami-

cally for several reasons, such as failures or rerouting along

the path and increased traffic due to colocated flows any-

where on the path [12, 43].

We use a “sliding window” approach to monitor the net-

work conditions periodically, including RTT, losses, and the

number of packets sent at each congestion window, over

a certain sliding window size. We use this to dynamically

update the model parameters and the p(cwnd, npc) function.

We use sensitivity analysis experiments to find the best win-

dow size for the sliding window. For a fair comparison, we

use a similar sliding window approach for other TCP models

when applicable (see §5).

Using the empirical measurement, we drive first estimate

expected throughput using Eq. (2). This estimation is closed-

form except for the infinite summation over cwnd values, e.g.,

in Eq. (3). In practice, we rarely see cwnd values greater than

a few thousands, so we cap the summation. The third step

is to periodically update the model parameters and p(cwnd)

function via the sliding window approach discussed in §4.3.

5 ECON TCP Model Evaluation
We evaluate our TCP throughput and latency modeling ac-

curacy under three different real world networks for: (i) TCP

CUBIC, (ii) TCP Reno, and (iii) a WiFi network. We compare

our model’s performance with several alternative models—

three of these are formula-based (FB) models [22, 24, 57] and

the other two are history-based (HB) models [36].

5.1 Methodology
Networks and experimental setup
We conduct experiments on three real-world networks (we

omit exact locations to preserve author anonymity):

1. Azure: This is a collection of five networks, with the

sender VM in each case hosted in the East US location

of Azure public cloud and the receiver VM hosted in the

Japan East, East US 2, West US 2, Central US, and South

Central US locations of Azure public cloud [51]. The aver-

age RTT within Azure is 10–200ms depending on the re-

ceiver VM location. Unless specified otherwise, we report

results for the receiver VM in Japan East, with average

RTT of 200ms.

2. Southeast: The receiver VM is located in a Southeast US

site of CloudLab and the sender is located in Northeast

US with average RTT of 23ms. The sender-receiver RTT

is quite small for this network, resulting in constant cwnd

(due to insufficient data generation to fill the cwnd in each

RTT). We thus use TC [1] to add 20ms to RTT.

3. Northeast: The sender and the receiver are both in North-
east US and are connected by a switch with an average

RTT of 50ms. We use TC to add 50ms to RTT and set a

packet loss rate of 0.001%.

The p(cwnd) curve for Northeast network under TCP CUBIC

and for Azure network under TCP Reno is shown in Figure 2;

graphs are similar for other networks. When running our

experiments, we leave the network parameters in the default

state. For example, TCP SACK and delayed ACK are enabled.

We find that the modeling error is not affected much by the

SACK and Delayed ACK settings. The one parameter that

we do change is the Linux TCP receive buffer size, which we

set to the maximum allowable value under the OS, (2
31
-1)

bytes)); this is done so that the data transfer is not limited

by small receive buffer sizes.

Data collection
All senders and receivers run the Ubuntu OS (v14.04.5 or

later). We use iPerf [68] to send TCP traffic from sender to

the receiver. For each network, we run several 1-hour ex-

periments spread over a period of 12 months with varying

number of TCP connections (from 1 to 10); in total, we have

about 700 hours worth of experimental data. Each experi-

ment begins with the slow-start phase.

We use the Linux TCP probe module [4] to record the

congestion window size (cwnd) when sending packets and

estimate the p(cwnd, npc) function as described in §3.2.

Alternative models for comparison
We compare our model accuracy with other models pub-

lished in the literature.

• The classic PFTK model [57] (discussed in §2.2).

6

0 20 40 60 80 100
Throughput modeling error (%)

0

0.2

0.4

0.6

0.8

1

C
D

F

ECON
He05-EWMA
He05-HoltWinters

(a) Throughput (Azure)

0 20 40 60 80 100
Throughput modeling error (%)

0

0.2

0.4

0.6

0.8

1

C
D

F

ECON
He05-EWMA
He05-HoltWinters

(b) Throughput (Southeast)

0 20 40 60 80 100
Throughput modeling error (%)

0

0.2

0.4

0.6

0.8

1

C
D

F

ECON
He05-EWMA
He05-HoltWinters

(c) Throughput (Northeast)

Figure 5. CDF of TCP CUBIC throughput modeling error under all eligible models for the Azure, Southeast, and Northeast networks. Some

alternate analytical models [22, 24, 57] are designed for TCP Reno, so we are unable to compare against them for the CUBIC experiments.

The experiments predict throughput for the next 1 second.

0 20 40 60 80 100
Throughput modeling error (%)

0

0.2

0.4

0.6

0.8

1

C
D

F ECON
PFTK
PFTK_C
PFTK_R
EWMA
Holt-Winters

(a) Throughput (Azure)

0 20 40 60 80 100
Throughput modeling error (%)

0

0.2

0.4

0.6

0.8

1
C

D
F ECON

PFTK
PFTK_C
PFTK_R
EWMA
Holt-Winters

(b) Throughput (Southeast)

0 20 40 60 80 100
Throughput modeling error (%)

0

0.2

0.4

0.6

0.8

1

C
D

F ECON
PFTK
Chen06
Dunaytsev07
He05-EWMA
He05-HoltWinters

(c) Throughput (Northeast)

Figure 6. CDF of TCP Reno throughput modeling error under all models for the Azure, Southeast, and Northeast networks. The experiments

predict throughput for the next 30 seconds.

• Themodel proposed byChen et al. [22], denoted asChen06,
that corrects errors in the classic PFTK model relating to

overprediction of the send rate.

• The model proposed by Dunaytsev et al. [24], denoted as

Dunaytsev07, that predicts TCP Reno’s throughput by

accounting for fast retransmit/fast recovery dynamics and

slow start state.

• Exponentially weighted moving average (He05-EWMA)
[36], a parameterized history-based model that predicts

throughput based on previously observed throughput val-

ues.

• Holt-Winters (He05-HoltWinters), also a parameterized

history-based model that is well suited to non-stationary

processes. He05-HoltWinters predicts throughput by cap-

turing the trend in previously observed throughput values,

as detailed in He at al. [36].

The PFTK model [57] was published before 2004, when a

draft of the CUBIC variant was first introduced [59]; as such,

the first three (PFTK-based) models only apply to TCP Reno,

and not CUBIC. We thus compare our CUBIC model with

He05-EWMA and He05-HoltWinters. For our TCP Reno

model, we compare with all five alternative models.

Sensitivity analysis
For a fair comparison, we enhance the three analytical mod-

els [22, 24, 57] to use the same sliding window approach

as our model (§4.3). He05-EWMA and He05-HoltWinters

already use a sliding window approach.

For each model, we run a sensitivity analysis across differ-

ent sliding window sizes, or training size (number of seconds

of historical data to use), and the update frequency (how of-

ten to slide the window). We vary both parameters between

10s and 100s; values above 100s result in stale data, and values

closer to 1s result in high overhead. For the formula-based

models (PFTK, Chen06, Dunaytsev07, and ECON), we find

that a large window size works well, so we set the window

size to 100s. For He05-EWMA and He05-HoltWinters, we

find that a smaller window size works well, so we set 10s for

these models. In all cases, we find that the update frequency

of 10s works well.

The He05-EWMA and He05-HoltWinters also have two

additional parameters α and β that need tuning. The original

paper used the values of α = 0.8 and β = 0.2 [36]. However,
our sensitivity analysis showed that α = 0.8 and β = 0.8
works best on our testbed, so we use these parameter values.

We verify that using different parameter values result in

poorer prediction performance.

5.2 TCP CUBIC and Reno throughput results
We evaluate the prediction error when running two TCP

variants: TCP CUBIC and Reno. We predict the throughput

for the next 1s, 5s, and 30s. Below we present the prediction

errors when using TCP CUBIC and predicting for the next 1s

7

and TCP Reno when predicting for the next 30s. The other

combinations showed quantitatively similar results.

CDF of TCP Cubic Throughput modeling errors
Figure 5 shows the CDF of TCP CUBIC throughput modeling

errors for all models and all networks. These results are

based on 75,000 prediction windows across all networks. We

compute the modeling error by comparing our predictions

with the observed experimental values.

Our model significantly outperforms all other models for

all networks. Our median throughput modeling error for

Azure, Southeast, and Northeast is about 14.5%, 17.5%, and

13.5%, respectively. By comparison, the best median through-

out modeling error for He05-EWMA/He05-HoltWinters is

27.3%, 51.1%, and 33.2%, for the three networks.

For the alternative models, the error is large for the South-
east network. This is because this network has a small RTT,

resulting in a very dynamic cwnd evolution, which is hard

to capture using historical observations alone. We find that

He05-EWMA typically has (slightly) lower errors compared

to He05-HoltWinters.

When comparing the average modeling error, ECON outper-
forms the best alternative model in each case by about 65%

or 29% absolute reduction in error (averages not shown in

figure).

CDF of TCP Reno Throughput modeling errors
We evaluate the modeling error for TCP Reno over all three

networks and compare with all five alternative models as

they apply to TCP Reno. The modeling error corresponds to

predicting the throughput for a 30 second interval.

Figure 6 shows the CDF of TCP Reno throughput modeling

error for all networks. As before, ECON outperforms all given

alternatives.

Modeling errors: Varying parameters, dynamic
network conditions
Figure 7 breaks down the TCP CUBIC throughput model-

ing error as a function of the starting congestion window

(scwnd) for our model and the alternative models under the

Azure network. While we outperform other models for all

scwnd values, the relative improvement is more pronounced

for smaller and larger scwnd values. This is because other

models assume that the loss probability (p) is independent of

cwnd, whereas we find that p is higher than average when

cwnd is either small or large (see Figure 2).

We evaluate ECON by varying the number of parallel con-

nections (npc). Our model outperforms other models irre-

spective of the number of parallel connections; further, our

75%ile error numbers are much lower than the corresponding

numbers for other models (graphs omitted for brevity).

To evaluate the effectiveness of the sliding window ap-

proach across models, we consider the Azure network with

the server VM located in West US 2 and run TCP Reno. We

use TC [1] to change the RTT and loss rate, p, to emulate

varying network conditions. In each experiment, we start

0 100 200 300 400 500 600 700 800
scwnd

0

50

100

150

M
od

el
in

g
er

ro
r

(%
) ECON

He05-EWMA
He05-HoltWinters

Figure 7. Throughput modeling error versus the starting conges-

tion window size (scwnd) for Azure network.

Change in RTT:
100ms 50ms

Change in RTT:
100ms 150ms

Change in p:
10-5 10-6

0

10

20

30

40

M
od

el
in

g
E

rr
or

 (
%

)

Our Model Chen06 He05-EWMA

Figure 8. Throughput modeling error under changing network

conditions. Our model continues to outperform other models.

with a 100ms RTT and p = 10
−5
. Then, a few minutes into

the experiment, we abruptly change the network conditions;

we terminate the experiment after 30 minutes.

Figure 8 shows the average modeling error for the case

of decreasing RTT, increasing RTT, and decreasing p. We

compare with the two best performing alternatives. Our

model results in much lower modeling error compared to

other models in all cases.

5.3 Modeling results for wireless network
For wireless experiments, we use the wired VM in the South-
east CloudLab site as the sender and then set the receiver in

the Northeast to be on a wireless (WiFi) connection. We set

the number of TCP connections to be 1, and run experiments

for a total of 5 hours.

Figure 9 shows the CDF of the throughout modeling error

under TCP Reno (so we can compare with all alternative

models); results are similar under CUBIC. Compared to the

best alternative model, our model reduces the median and

average throughput modeling error from 14.9% and 16.8%

(He05-HoltWinters) to 3.3% and 6.9%, respectively.

For the wireless network, the p(cwnd) plot (not shown)

continues to exhibit a U-shaped relationship. However, due

to the larger RTT for wireless connections, we observe a nar-

rower range of congestion window values, resulting in lower

errors across all models compared to the wired networks.

5.4 Latency modeling errors
An immediate and practical application of our TCP through-

put model is to predict the latency of TCP flows; TCP is

often used as the underlying transport layer for several ap-

plications, so predicting the TCP latency of data transfers is

beneficial for application-level modeling.

8

0 20 40 60 80 100
Throughput modeling error (%)

0

0.2

0.4

0.6

0.8

1

C
D

F ECON
PFTK
Chen06
Dunaytsev07
He05-EWMA
He05-HoltWinters

Figure 9. TCP Reno throughput modeling error for a wireless

connection on Southeast network.

0 20 40 60 80 100
Latency modeling error (%)

0

0.2

0.4

0.6

0.8

1

C
D

F

ECON
He05-EWMA
He05-HoltWinters

(a) TCP Cubic, Southeast

0 20 40 60 80 100
Latency modeling error (%)

0

0.2

0.4

0.6

0.8

1

C
D

F Our Model
PFTK
Chen06
Dunaytsev07
He05-EWMA
He05-HoltWinters

(b) TCP Reno, Southeast

Figure 10. TCP latency modeling error for (a) CUBIC and (b)

Reno, on Southeast network.

Network ECON EWMA H.Winters

Azure 16.8 25.0 33.0

SouthEast 20.2 48.5 60.2

NorthEast 15.0 32.7 40.1

Table 2. Average error for CUBIC latency modeling for all net-

works.

Figure 10 shows the latency prediction error CDF under

TCP CUBIC and TCP Reno for the Southeast network. The
results are based on more than 5000 data transfer experi-

ments, with the data size in each transfer ranging from 5MB

to 250MB. While some of the alternative models, such as

He05-EWMA [36], only focus on throughput modeling, we

extend their models to also predict latency, similar to our

model. Data transfers of size less than 5MB often completed

within one RTT and were thus not considered as predicting

this latency is straightforward for all models.

The median latency prediction error of our model under

CUBIC is about 12%, whereas that of other models is about

58%. Under Reno, our median error is about 11%, while that of

other models ranges from about 28% (for He05-HoltWinters)

to 35% (for Dunaytsev07). We also find that the worst case

error for our model is about 70%, whereas that for other

models is greater than 100%.

Figure 11 shows the average prediction error under TCP

Reno broken down by data size to be transferred, along with

the 25%ile and 75%ile bars; we focus on Reno so we can

compare with all alternative models. The prediction error

Data size →
< 50MB 50-100MB > 100MB

La
te

nc
y

m
od

el
in

g
er

ro
r

(%
)
→

0

25

50

75

100
Our Model
PFTK
Chen06
Dunaytsev07
He05-EWMA
He05-HoltWinters

Figure 11. Latency prediction error for different data size ranges.

Our model provides greater benefits for lower data sizes.

improvement afforded by our model over other models de-

creases as the data size increases. This is to be expected as

(i) we use the predicted throughput of the first 1s interval

as a proxy for the entire transfer lifetime, and (ii) other ana-

lytical models, such as PFTK, use steady-state analysis with

constant loss rates which is well suited for bulk transfers

and not short flows [57].

Finally, Table 2 shows the average latency prediction error

under TCP CUBIC for all networks and all eligible models.

Our model consistently outperforms all other models for

all networks. Results are similar under TCP Reno, with the

averagemodeling error across all networks under ECON being
around 16%, whereas that under the best alternative model

(He05-EWMA) being around 30%.

6 Web: HTTP/1.1 vs HTTP/2
HTTP/2 was designed to improve performance over the

HTTP/1.1 protocol. However, it is not always clear when

HTTP/2 outperforms HTTP/1.1, as shown by empirical stud-

ies [60, 73]. Our goal is to analytically evaluate the perfor-

mance of HTTP/1.1 and HTTP/2 for a given workload and

environment condition, to decide which application protocol

to use in a given scenario. We use ECON’s HTTP-level models

from §4.2 to accurately predict the throughput and latency

of HTTP/1.1 and HTTP/2.

6.1 Experimental setup for validation
To validate our HTTP models, we experiment with HTTP

traffic between a browser and a Web server in Northeast

US. We use the Chrome browser (v63.0.3239.132) and an

Nginx Web server (v1.10.3) on Ubuntu 16.04.3 LTS OS. The

browser and the Web server support HTTP/1.1 and HTTP/2.

For HTTP/1.1, we use the default value of 6 parallel and

persistent connections. For HTTP/2, Nginx sets the default

value of 128 maximum concurrent streams. All objects are

requested from a single server. We use TC [1] to vary the

network conditions. We configure the Chrome browser to

automatically request a certain number and size of objects,

as specified by the experiment.

9

10KB-0.005%
10KB-0.01%

10KB-0.05%
100KB-0.005%

100KB-0.01%
100KB-0.05%

1MB-0.005%
1MB-0.01%

1MB-0.05%0

5

10

15

20

La
te

nc
y

P
re

di
ct

io
n

E
rr

or
 (

%
)

HTTP/2
HTTP/1.1

Figure 12. HTTP/1.1 and HTTP/2 latency modeling error under different file sizes and loss rates. For the first three bars the transfers are

completed within the slow-start phase of TCP. The low errors show that the ECON’s prediction in slow-start phase is accurate.

Figure 13. Prediction results for HTTP/1.1 vs. HTTP/2.

6.2 HTTP prediction results
Figure 12 shows our latency modeling error for HTTP/1.1

and HTTP/2 across 9 different experiments. In each exper-

iment, the browser requests 500 objects; we vary the ob-

ject sizes (10KB, 100KB, 1MB) and loss probability (0.005%,

0.01%, 0.05%) across experiments. Our average modeling er-

ror for HTTP/1.1 and HTTP/2 is 3.00% and 7.43%, respec-

tively. When fetching 10KB objects, both HTTP/1.1 and

HTTP/2 take less than the TCP remains in the slow-start

phase, showing that ECON can accurately predict perfor-

mance even when TCP is in slow start phase.

6.3 HTTP/1.1 versus HTTP/2
We now return to the key question we posed earlier—should

we use HTTP/1.1 or HTTP/2 for a given environment and

workload. Prior work [73] has investigated this question

via large-scale empirical studies. We now show that our

HTTP models can analyze different scenarios and provide

similar conclusions as the prior work, but without requiring

extensive experimentation.

We explore 16 different scenarios of workload and network

conditions: object size (10KB, 1MB), loss probability (10
−5
,

10
−4
), number of objects (10, 500), and RTT (50ms, 200ms) For

each scenario, we predict the latency under HTTP/1.1 and

HTTP/2 using our models. Figure 13 illustrates our predic-

tion results as a tree diagram that determineswhenHTTP/1.1

outperforms HTTP/2 and vice-versa. For all 16 scenarios, our

results are in agreement with the empirical results obtained

by prior work [73], without requiring extensive experimental

data.

In most cases, HTTP/2 has lower predicted latency com-

pared to HTTP/1.1. However, under high loss probability,

high RTTs, and large file sizes, HTTP/1.1 has lower latency,

as shown in Figure 13. We find that the wrong choice be-

tween HTTP/2 and HTTP/1.1 can result in up to 4.6× higher

latency, highlighting the importance of accurate analysis.

We find that the average increase in latency, across all 16

scenarios, when making the wrong choice is about 264%.

7 Applications to Data Centers
TCP traffic continues to dominate in data centers [8]. For ex-

ample, data transfer between web or application servers and

MySQL databases is over TCP (Rest APIs use HTTP, which

in turn relies on TCP), as is the data replication traffic in

databases (such as Cassandra [65]) [30, 33, 69] and the cloud

management and monitoring traffic (such as OpenStack’s

Ceilometer [56]) in cloud data centers. Our TCP models can

thus be readily applied to data center applications for per-

formance management.

One concrete use case we study is that of determining the

best source/destination server for data transfer. Several data

processing and data storage frameworks replicate data on

multiple nodes for availability and reliability [11, 23, 67]. In

such cases, when an external application wants to read some

data from these sources, it has a choice to make – “which

node to read data from?”. Likewise, in several scenarios, there

is a choice of “which node to send data to”, as is the case for

forwarding a request to one of many web/application servers

and when transferring data collected from a server to other

nodes for analysis [31, 32, 66]. We refer to these questions

as the data transfer path selection problem.

The main challenge here is that different paths may have

different network characteristics, such as RTT, loss rate, etc.

While one can empirically profile the network performance

on each path and pick the one with the best historical perfor-

mance, this approach ignores the dynamic and unpredictable

congestion behavior in TCP. By contrast, our TCP models

are designed to address such dynamic behaviors and can

quickly determine the best path for a given data transfer.

7.1 Experimental setup
We use the Azure public cloud data center, as detailed in

§5.1, for our experiments. We use 8 VMs, all in the East US

region of Azure. We use iPerf [68] to emulate data transfer,

10

T
hr

ou
gh

pu
t (

M
bp

s)
 →

0

200

400

600

p=5×10-5

RTT=5ms
p=2×10-5

RTT=10ms
p=5×10-4

RTT=5ms
p=2×10-4

RTT=10ms

+22%

-28%

(a) RTT and loss rate alone are not enough to

choose the best path.

Starting cwnd (scwnd) →
300 350 400 450

T
hr

ou
gh

pu
t (

M
bp

s)
 →

200

250

300

RTT=20ms, p=2×10-4

RTT=30ms, p=1×10-5

(b) scwnd value matters when determining the

best path.

Starting cwnd (scwnd) →
300 350 400 450

T
hr

ou
gh

pu
t (

M
bp

s)
 →

300

600

900

RTT=5ms, p=2×10-4

RTT=10ms, p=2×10-5

(c) For specific RTT and loss rate values, scwnd’s
effect may be small.

Figure 14. Impact of various parameters on the choice of optimal path. y axes in (b) and (c) do not start at 0 for clearer illustration.

and vary network conditions using TC [1] to create different

data transfer paths.

7.2Choosing the optimal data transfer path
To choose the best source/destination node for data transfer,

we leverage our models to predict throughput based on the

network conditions (RTT, loss probability, etc.) of each path.

Recall, from §5.2, that the average prediction error for our

Azure setup is about 16%.

Figure 14(a) shows our predicted throughput for four spe-

cific data transfer paths with different RTTs and loss probabil-

ities (p). In the first set of bars (left), we see that throughput

drops by 28% when the RTT doubles (from 5ms to 10ms)

despite a 2.5× drop in p (from 5×10−5 to 2×10−5). While this

observation is interesting in itself, we find that this is not

always the case. The second set of bars (right) show a similar

pair of paths with a 2× rise in RTT but a 2.5× drop in p, ex-
cept this time p drops from 5×10−4 to 2×10−4. Interestingly,

the higher RTT path has 22% higher throughput compared

to the lower RTT path, contrary to our previous observation.

Using a purely empirical approach to predict the relative

ordering of throughput for the second case based on obser-

vations from the first case would result in a significant loss

of performance (about 52Mbps lower throughput).

To further analyze the behavior of throughput, we con-

sider the starting congestion window (scwnd) value of TCP
flows. Figure 14(b) shows the predicted throughput as a

function of scwnd for two paths, one with RTT=20ms and

p = 2× 10
−4
, and the other with RTT=30ms (a 1.5× increase)

and p = 1×10
−5

(a 20× decrease); the x-axis and y-axis limits

are intentionally chosen to clearly illustrate the comparison

of throughputs. Interestingly, we see that the relative order-

ing of throughput depends on scwnd. While the lower RTT

path has higher throughput for most of the scwnd range, the
order reverses for the lower scwnd range.
Figure 14(c) shows our results for yet another scenario

where we compare a 5ms RTT, p = 2 × 10
−4

path with a

10ms RTT, p = 2 × 10
−5

path. In this case, the lower RTT

path clearly dominates, by as much 2×, within the chosen

range of scwnd. In fact, the throughput for the lower RTT

path at scwnd= 300 is still higher than the throughput for

the higher RTT path at scwnd= 450.

Relying only on empirical observations to choose the

best path can be insufficient, as demonstrated by our non-

intuitive results above. By using our prediction models, prac-

titioners can quickly decide which data transfer path to use.

8 Related Work
Existing work on TCP modeling can be broadly catego-

rized [36] into (i) formula-based (FB) models and (ii) history-

based (HB) models.

FB predictors rely on analytical models to characterize

the TCP performance as a function of the underlying net-

work [19, 22, 24, 53, 57, 58]. HB predictors, on the other hand,

employ time-series based techniques to forecast TCP perfor-

mance based on historically observed values [36, 63, 70]. Our

model leverages the advantages of both FB and HBmodels by

augmenting analytical modeling with dynamically updated

empirical information.

FB models: The PFTK model [57] characterizes the steady-

state TCP (Reno) throughput as a function of loss probability

(p) and RTT. Newer models correct errors in PFT [22] and ac-

counting for fast retransmit/fast recovery dynamics and slow

start phase [24]. Cardwell et al. extend the PFTK throughput

model to TCP latency modeling [19].

Several other stochastic TCP modeling approaches have

been proposed but assume specific distributions for packet

losses [7, 9, 53].

Goyal et al. predict the TCP throughput under a random

loss model (constant loss probability) based on monitored

metrics sampled at the congestions points on the path [34],

but assume that the congestion points in the link are known.

Hespanha et al. [38] propose a theoretical model for TCP

performance when operating under the drop-tail queueing

policy. Fortin-Parisi and Sericola use Markov chains to model

TCP performance [28]; however, like PFTK, they assume a

fixed packet loss probability.

HB models: Exponential weighted moving average (He05-

EWMA) and Holt-Winters (He05-HoltWinters) [36] are HB

models that predict TCP throughput based on previously

observed throughput values (see §5.1).

Prior approaches have also employed learning algorithms,

such as Support Vector Regression, for TCP performance

modeling [15, 44, 52]. However, such approaches typically

11

require additional features that are not always observable,

such as queueing delay and available bandwidth [52], and

may also require non-trivial parameter tuning [15].

Models for specific scenarios and variants: There are

several works that focus specifically on short flows [18, 50]

but also assume that losses are independent. For large flows,

DualPats leverages the correlation between TCP through-

put and flow size to predict performance [47]. There are

also works that focus specifically on deriving models for

parallel TCP connections [10, 48] and for wireless TCP con-

nections [29, 41, 42, 55]. By contrast, we capture the TCP

performance under all the above scenarios.

Some models use router-level information to model TCP

performance under different AQM techniques such as RED [16,

45, 54]. However, router-level information is not easy to ob-

tain. Instead, in our work, p(cwnd) is derived by observing

the end-to-end performance, which incorporates the effect

of different queue management techniques.

Given that TCP has many variants, several studies [13, 25,

46, 58, 61, 62, 72] focus on modeling TCP throughput un-

der different congestion control algorithms, including Reno,

NewReno, Vegas, CUBIC, Tahoe, and Fast. We show in §3

that our model can characterize TCP performance under

both Reno and CUBIC. We believe that our model can be

extended to other TCP variants, such as BBR [17], that have

a specifiable cwnd evolution; we will investigate such model

extensions as part of future work.

HTTPmodels: Zarifis et al. recently proposed an approach

to estimate HTTP/2 performance [75]. However, this ap-

proach relies on the availability of existing HTTP/1.1 traces.

Heidemann et al. [37] propose an analytical model for HTTP

performance over different networks and transport proto-

cols; however, they assume no packet loss. Finally, there are

works that focus on HTTP traffic modeling [20, 49], and not

throughput modeling, which is the focus of our work.

9 Conclusion
ECON presents a scalable and systematic model to easily eval-

uate the performance of different network choices in the con-

text of HTTP and data center applications. The core of ECON
is an analytical TCP model that adapts to dynamic network

conditions by empirically estimating the effect of congestion

window on loss rate. By taking into account the effect of

network congestion, ECON removes the limiting assumptions

made by existing analytical models. ECON’s application level

model for latency and HTTP is built on top of the TCP model.

Evaluation results across three different wired networks

and one wireless network highlight the accuracy of the ECON
TCP model. The ECON latency predictions and HTTP predic-

tions have an error of less than 15%. We demonstrate ECON’s
applicability to improving network performance by accu-

rately and scalably predicting (i) the network and workload

conditions under which HTTP/2 outperforms HTTP/1.1 and

vice-versa, and (ii) the optimal path for data transfer in public

clouds, among paths with different network characteristics.

A Appendix: TCP Modeling Details
Deriving E[M]: To determineM , the index of the first lost

packet, we first consider a single connection. The probability

of a loss in the very first packet is simply p(scwnd); thus,
Pr (M = 1) = p(scwnd). The probability of having the first

loss at the second packet, assuming scwnd > 1, is Pr (M =
2) = (1 − p(scwnd)) · p(scwnd), since the first packet did not

experience a loss; similarly forM ≤ scwnd .
For M > scwnd , we consider the congestion avoidance

algorithm. Let cwndj be the cwnd for the jth congestion win-

dow,with cwnd1 = scwnd . Under Reno, cwndj = scwnd+j−1,
and under CUBIC, cwndj = C((j−1)RTT−K)

3+scwnd/(1−β).
As cwnd increases, the loss probability function changes

based on p(cwnd). Thus, for scwnd < i ≤ cwnd2:
Pr (M = i) = (1 − p(scwnd))scwnd · (1 − p(cwnd2))i−1 · p(cwnd2)

We similarly compute Pr (M = i) based on p(cwnd) for all i
and derive E[M] =

∑
i i · Pr (M = i).

We repeat the same analysis as above by replacingp(cwnd)
with p(cwnd,npc). Substituting for Pr (M = i) in E[M] =∑

i i · Pr (M = i) and simplifying results in Eq. (3).

Deriving E[X]: Since each RTT corresponds to one cwnd ,
we have E[X] =

∑∞
n=1 n · q(n,npc), where q(n,npc) is the

probability of the first packet loss occurring during the nth

cwnd after the transfer starts. To derive q(n,npc), we first
derive the probability that there is no packet loss in a cwnd
of size s given npc connections as qs ,npc = (1 − p(s,npc))s .
Thus, the probability of a loss in a cwnd of size s is qs ,npc =
1−qs ,npc . Now, q(n,npc) can be expressed in terms of qs ,npc

as q(n,npc) = qcwndn ,npc ·
∏n−1

j=1 qcwndj ,npc . Finally, E[X] can

be obtained as:∑∞
n=1 n · q(n,npc) =

∑∞
n=1 n(1 − (1 − p(cwndn,npc))

cwndn)

×
∏n−1

j=1 (1 − p(cwndj ,npc))
cwndj

Deriving E[N]: If we assume that the first loss occurs at the

mth packet of the nth cwnd , thenM =
∑n−2

i=0 (scwnd + i) +m.

N includes all M packets except the lost packet (M-1), and

the additional packets sent before the loss is detected by the

sender (cwndE[X]). Thus, E[N] = (E[M] − 1) + cwndE[X].

Slow-start phase: Consider the first packet loss to occur at

themth packet of the ith RTT. The number of successfully

transferred packets is icwnd × (2i−1 − 1) +m − 1. Let Ms
denote the index of the first packet loss during slow start,

then:

E[Ms] =

∞∑
i=1

icwnd ·2i−1∑
m=1

(icwnd × (2i−1 − 1) +m)

×

i−1∏
j=1

(1 − p(icwnd × 2
j−1,npc))icwnd×2j−1

×(1 − p(icwnd × 2
i−1,npc))m−1 · p(icwnd × 2

i−1,npc)

12

Total RTTs during the slow start isE[Xs] = ⌊log
2
(E[Ms])/icwnd⌋+

1. The total number of packets sent during slow start is thus

E[Ns] = E[Ms] + icwnd × 2
E[Xs]−1 − 1.

References
[1] Linux Traffic Controller. http://tldp.org/HOWTO/Traffic-Control-

HOWTO/intro.html.
[2] TCP NewReno. https://tools.ietf.org/html/rfc6582.
[3] TCP Reno. https://intronetworks.cs.luc.edu/current/html/reno.html.
[4] Tcp probe. https://wiki.linuxfoundation.org/networking/tcpprobe,

2016.

[5] Apache. https://httpd.apache.org/, 2017.
[6] nginix. https://nginx.org/en/, 2017.
[7] Abouzeid, A. A., Roy, S., and Azizoglu, M. Stochastic modeling of tcp

over lossy links. In INFOCOM 2000. Nineteenth Annual Joint Conference
of the IEEE Computer and Communications Societies. Proceedings. IEEE
(2000), vol. 3, IEEE, pp. 1724–1733.

[8] Alizadeh, M., Greenberg, A., Maltz, D. A., Padhye, J., Patel, P.,

Prabhakar, B., Sengupta, S., and Sridharan, M. Data center tcp

(dctcp). In Proceedings of the ACM SIGCOMM 2010 Conference (New
York, NY, USA, 2010), SIGCOMM ’10, ACM, pp. 63–74.

[9] Altman, E., Avrachenkov, K., and Barakat, C. A stochastic model

of tcp/ip with stationary random losses. ACM SIGCOMM Computer
Communication Review 30, 4 (2000), 231–242.

[10] Altman, E., Barman, D., Tuffin, B., and Vojnovic, M. Parallel tcp

sockets: Simple model, throughput and validation. In INFOCOM (2006),

vol. 2006, pp. 1–12.

[11] Amur, H., Cipar, J., Gupta, V., Ganger, G. R., Kozuch, M. A., and

Schwan, K. Robust and flexible power-proportional storage. In Pro-
ceedings of the 1st ACM Symposium on Cloud Computing (Indianapolis,

IN, USA, 2010), SoCC ’10, pp. 217–228.

[12] Balakrishnan, H., Padmanabhan, V. N., Seshan, S., Stemm, M., and

Katz, R. H. Tcp behavior of a busy internet server: Analysis and

improvements. In INFOCOM’98. Seventeenth Annual Joint Conference
of the IEEE Computer and Communications Societies. Proceedings. IEEE
(1998), vol. 1, IEEE, pp. 252–262.

[13] Bao, W., Wong, V. W., and Leung, V. C. A model for steady state

throughput of tcp cubic. In Global Telecommunications Conference
(GLOBECOM 2010), 2010 IEEE (2010), IEEE, pp. 1–6.

[14] Belshe, M., Thomson, M., and Peon, R. Hypertext transfer protocol

version 2 (http/2).

[15] Bermolen, P., and Rossi, D. Support vector regression for link load

prediction. Computer Networks 53, 2 (2009), 191–201.
[16] Bu, T., and Towsley, D. Fixed point approximations for tcp behavior

in an aqm network. SIGMETRICS Perform. Eval. Rev. 29, 1 (June 2001),
216–225.

[17] Cardwell, N., Cheng, Y., Gunn, C. S., Yeganeh, S. H., and Jacobson,

V. Bbr: Congestion-based congestion control. Queue 14, 5 (Oct. 2016),
50:20–50:53.

[18] Cardwell, N., Savage, S., and Anderson, T. Modeling the perfor-

mance of short tcp connections. Techical Report (1998).
[19] Cardwell, N., Savage, S., and Anderson, T. Modeling tcp latency.

In INFOCOM 2000. Nineteenth Annual Joint Conference of the IEEE
Computer and Communications Societies. Proceedings. IEEE (2000), vol. 3,
IEEE, pp. 1742–1751.

[20] Casilari, E., Gonzblez, F., and Sandoval, F. Modeling of http traffic.

IEEE Communications Letters 5, 6 (2001), 272–274.
[21] Chan, M. C., and Ramjee, R. Tcp/ip performance over 3g wireless

links with rate and delay variation. Wireless Networks 11, 1-2 (2005),
81–97.

[22] Chen, Z., Bu, T., Ammar, M., and Towsley, D. Comments onmodeling

tcp reno performance: a simple model and its empirical validation.

IEEE/ACM Transactions on Networking (ToN) 14, 2 (2006), 451–453.

[23] Dean, J., and Ghemawat, S. Mapreduce: Simplified data processing

on large clusters. In Proceedings of the 6th Conference on Symposium
on Opearting Systems Design & Implementation - Volume 6 (Berkeley,
CA, USA, 2004), OSDI’04, USENIX Association, pp. 137–150.

[24] Dunaytsev, R., Koucheryavy, Y., and Harju, J. The pftk-model

revised. Computer communications 29, 13 (2006), 2671–2679.
[25] Dunaytsev, R., Koucheryavy, Y., and Harju, J. Tcp newreno through-

put in the presence of correlated losses: The slow-but-steady variant.

In INFOCOM 2006. 25th IEEE International Conference on Computer
Communications. Proceedings (2006), IEEE, pp. 1–6.

[26] Fall, K. R., and Stevens, W. R. TCP/IP illustrated, volume 1: The
protocols. addison-Wesley, 2011.

[27] Fitzpatrick, B. Distributed caching with memcached. Linux Journal
2004, 124 (2004).

[28] Fortin-Parisi, S., and Sericola, B. Amarkovmodel of tcp throughput,

goodput and slow start. Performance Evaluation 58, 2-3 (2004), 89–108.
[29] Fu, S., and Atiqzzaman, M. Modelling tcp reno with spurious time-

outs in wireless mobile environments. In Computer Communications
and Networks, 2003. ICCCN 2003. Proceedings. The 12th International
Conference on (2003), IEEE, pp. 391–396.

[30] Gandhi, A., Chen, Y., Gmach, D., Arlitt, M., and Marwah, M. Min-

imizing Data Center SLA Violations and Power Consumption via

Hybrid Resource Provisioning. In Proceedings of the 2011 Interna-
tional Green Computing Conference (Orlando, FL, USA, 2011), IGCC
’11, pp. 49–56.

[31] Gandhi, A., Harchol-Balter, M., Raghunathan, R., and Kozuch,

M. AutoScale: Dynamic, Robust Capacity Management for Multi-Tier

Data Centers. Transactions on Computer Systems 30 (2012).
[32] Gandhi, A., Zhu, T., Harchol-Balter, M., and Kozuch, M.

SOFTScale: Scaling Opportunistically For Transient Scaling. In Pro-
ceedings of the 13th International Middleware Conference (Montreal,

Quebec, Canada, 2012), Middleware ’12, pp. 142–163.

[33] Gmach, D., Rolia, J., Cherkasova, L., and Kemper, A. Resource pool

management: Reactive versus proactive or let’s be friends. Computer
Networks 53, 17 (Dec. 2009), 2905–2922.

[34] Goyal, M., Guerin, R., and Rajan, R. Predicting tcp throughput

from non-invasive network sampling. In INFOCOM 2002. Twenty-First
Annual Joint Conference of the IEEE Computer and Communications
Societies. Proceedings. IEEE (2002), vol. 1, IEEE, pp. 180–189.

[35] Ha, S., Rhee, I., and Xu, L. Cubic: A new tcp-friendly high-speed tcp

variant. SIGOPS Oper. Syst. Rev. 42, 5 (July 2008), 64–74.

[36] He, Q., Dovrolis, C., and Ammar, M. On the predictability of large

transfer tcp throughput. In ACM SIGCOMM Computer Communication
Review (2005), vol. 35, ACM, pp. 145–156.

[37] Heidemann, J., Obraczka, K., and Touch, J. Modeling the perfor-

mance of http over several transport protocols. IEEE/ACM Transactions
on Networking (TON) 5, 5 (1997), 616–630.

[38] Hespanha, J. P., Bohacek, S., Obraczka, K., and Lee, J. Hybrid

modeling of tcp congestion control. In International Workshop on
Hybrid Systems: Computation and Control (2001), Springer, pp. 291–
304.

[39] HTTP/2. https://http2.github.io/.
[40] Jiang, H., and Dovrolis, C. Passive estimation of tcp round-trip times.

ACM SIGCOMM Computer Communication Review 32, 3 (2002), 75–88.
[41] Katsuhiro, N., Okada, H., Yamazato, T., Katayama, M., and Ogawa,

A. New analytical model for the tcp throughput in wireless environ-

ment. In Vehicular Technology Conference, 2001. VTC 2001 Spring. IEEE
VTS 53rd (2001), vol. 3, IEEE, pp. 2128–2132.

[42] Kim, M., Médard, M., and Barros, J. Modeling network coded tcp

throughput: A simple model and its validation. In Proceedings of the
5th International ICST Conference on Performance Evaluation Method-
ologies and Tools (2011), ICST (Institute for Computer Sciences, Social-

Informatics and Telecommunications Engineering), pp. 131–140.

13

http://tldp.org/HOWTO/Traffic-Control-HOWTO/intro.html
http://tldp.org/HOWTO/Traffic-Control-HOWTO/intro.html
https://tools.ietf.org/html/rfc6582
https://intronetworks.cs.luc.edu/current/html/reno.html
https://wiki.linuxfoundation.org/networking/tcpprobe
https://httpd.apache.org/
https://nginx.org/en/
https://http2.github.io/

[43] Lai, K., and Baker, M. Measuring bandwidth. In INFOCOM’99. Eigh-
teenth Annual Joint Conference of the IEEE Computer and Communica-
tions Societies. Proceedings. IEEE (1999), vol. 1, IEEE, pp. 235–245.

[44] Lee, C., Abe, H., Hirotsu, T., and Umemura, K. Analytical modeling of

network throughput prediction on the internet. IEICE TRANSACTIONS
on Information and Systems 95, 12 (2012), 2870–2878.

[45] Low, S. H. A duality model of tcp and queue management algorithms.

IEEE/ACM Trans. Netw. 11, 4 (Aug. 2003), 525–536.
[46] Low, S. H., Peterson, L. L., and Wang, L. Understanding tcp vegas: a

duality model. Journal of the ACM (JACM) 49, 2 (2002), 207–235.
[47] Lu, D., Qiao, Y., Dinda, P. A., and Bustamante, F. E. Character-

izing and predicting tcp throughput on the wide area network. In

Distributed Computing Systems, 2005. ICDCS 2005. Proceedings. 25th
IEEE International Conference on (2005), IEEE, pp. 414–424.

[48] Lu, D., Qiao, Y., Dinda, P. A., and Bustamante, F. E. Modeling

and taming parallel tcp on the wide area network. In Parallel and
Distributed Processing Symposium, 2005. Proceedings. 19th IEEE Interna-
tional (2005), IEEE, pp. 10–pp.

[49] Mah, B. A. An empirical model of http network traffic. In INFOCOM’97.
Sixteenth Annual Joint Conference of the IEEE Computer and Communi-
cations Societies. Driving the Information Revolution., Proceedings IEEE
(1997), vol. 2, IEEE, pp. 592–600.

[50] Mellia, M., and Zhang, H. Tcp model for short lived flows. IEEE
communications letters 6, 2 (2002), 85–87.

[51] Microsoft Azure. Azure regions. https://azure.microsoft.com/en-
us/regions.

[52] Mirza, M., Sommers, J., Barford, P., and Zhu, X. A machine learn-

ing approach to tcp throughput prediction. In ACM SIGMETRICS
Performance Evaluation Review (2007), vol. 35, ACM, pp. 97–108.

[53] Misra, V., Gong, W.-B., and Towsley, D. Stochastic differential equa-

tion modeling and analysis of tcp-windowsize behavior. In Proceedings
of PERFORMANCE (1999), vol. 99.

[54] Misra, V., Gong, W.-B., and Towsley, D. Fluid-based analysis of

a network of aqm routers supporting tcp flows with an application

to red. In Proceedings of the Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication (New York,

NY, USA, 2000), SIGCOMM ’00, ACM, pp. 151–160.

[55] Nguyen, G. T., Katz, R. H., Noble, B., and Satyanarayanan, M.

A trace-based approach for modeling wireless channel behavior. In

Proceedings of the 28th conference on Winter simulation (1996), IEEE

Computer Society, pp. 597–604.

[56] Openstack.org. Ceilometer. https://docs.openstack.org/ceilometer.
[57] Padhye, J., Firoiu, V., Towsley, D., and Kurose, J. Modeling tcp

throughput: A simple model and its empirical validation. ACM SIG-
COMM Computer Communication Review 28, 4 (1998), 303–314.

[58] Parvez, N., Mahanti, A., andWilliamson, C. An analytic throughput

model for tcp newreno. IEEE/ACM Transactions on Networking (ToN)
18, 2 (2010), 448–461.

[59] Rhee, I., and Xu, L. CUBIC: A New TCP-Friendly High-Speed TCP

Variant. In Proceedings of the 3rd InternationalWorkshop on Protocols for
Fast Long-Distance Networks (Lyon, France, 2005), PFLDnet Workshop.

[60] Rosen, S., Han, B., Hao, S., Mao, Z. M., and Qian, F. Push or request:

An investigation of http/2 server push for improving mobile perfor-

mance. In Proceedings of the 26th International Conference on World
Wide Web (Republic and Canton of Geneva, Switzerland, 2017), WWW

’17, International World Wide Web Conferences Steering Committee,

pp. 459–468.

[61] Samios, C. B., and Vernon, M. K. Modeling the throughput of tcp

vegas. In ACM SIGMETRICS Performance Evaluation Review (2003),

vol. 31, ACM, pp. 71–81.

[62] Sikdar, B., Kalyanaraman, S., and Vastola, K. S. Analytic models

for the latency and steady-state throughput of tcp tahoe, reno, and

sack. IEEE/ACM Transactions On Networking 11, 6 (2003), 959–971.

[63] Swany, M., and Wolski, R. Multivariate resource performance fore-

casting in the network weather service. In Supercomputing, ACM/IEEE
2002 Conference (2002), IEEE, pp. 11–11.

[64] The Apache Software Foundation. Apache Hadoop.

http://hadoop.apache.org.

[65] The Apache Software Foundation. Cassandra. http://cassandra.
apache.org/doc/latest/configuration/cassandra_config_file.html.

[66] The Apache Software Foundation. Kafka. https://kafka.apache.org.
[67] Thereska, E., Donnelly, A., and Narayanan, D. Sierra: practical

power-proportionality for data center storage. In Proceedings of the 6th
European Conference on Computer Systems (Salzburg, Austria, 2011),
EuroSys ’11, pp. 169–182.

[68] Tirumala, A., Qin, F., Dugan, J., Ferguson, J., and Gibbs, K. Iperf.

[69] Urgaonkar, B., and Chandra, A. Dynamic Provisioning of Multi-

tier Internet Applications. In Proceedings of the 2nd International
Conference on Automatic Computing (Seattle, WA, USA, 2005), ICAC

’05, pp. 217–228.

[70] Vazhkudai, S., Schopf, J. M., and Foster, I. Predicting the perfor-

mance of wide area data transfers. In Parallel and Distributed Processing
Symposium., Proceedings International, IPDPS 2002, Abstracts and CD-
ROM (2001), IEEE, pp. 10–pp.

[71] Veal, B., Li, K., and Lowenthal, D. New methods for passive estima-

tion of tcp round-trip times. In International Workshop on Passive and
Active Network Measurement (2005), Springer, pp. 121–134.

[72] Wang, J., Wei, D. X., Choi, J.-Y., and Low, S. H.Modelling and stability

of fast tcp. InWireless Communications. Springer, 2007, pp. 331–356.
[73] Wang, X. S., Balasubramanian, A., Krishnamurthy, A., and

Wetherall, D. How speedy is spdy? In Proceedings of the 11th
USENIX Conference on Networked Systems Design and Implementation
(Berkeley, CA, USA, 2014), NSDI’14, USENIX Association, pp. 387–399.

[74] Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S., and

Stoica, I. Spark: Cluster Computing withWorking Sets. In Proceedings
of the 2nd USENIXConference onHot Topics in Cloud Computing (Boston,
MA, USA, 2010), HotCloud ’10.

[75] Zarifis, K., Holland, M., Jain, M., Katz-Bassett, E., and Govindan,

R.Modeling http/2 speed fromhttp/1 traces. In International Conference
on Passive and Active Network Measurement (2016), Springer, pp. 233–
247.

14

https://azure.microsoft.com/en-us/regions
https://azure.microsoft.com/en-us/regions
https://docs.openstack.org/ceilometer
http://cassandra.apache.org/doc/latest/configuration/cassandra_config_file.html
http://cassandra.apache.org/doc/latest/configuration/cassandra_config_file.html
https://kafka.apache.org

	1 Introduction
	2 Background and Motivation
	2.1 Background on TCP
	2.2 Overview of existing analytical models
	2.3 Limiting assumptions of existing models

	3 ECON TCP Model
	3.1 Model intuition
	3.2 Empirical relation between cwnd and loss rate
	3.3 Modeling TCP CUBIC throughput
	3.4 Extension to TCP Reno
	3.5 Modeling TCP Slow start

	4 ECON
	4.1 Modeling latency
	4.2 HTTP modeling
	4.3 Using the model in practice and adapting to network changes

	5 ECON TCP Model Evaluation
	5.1 Methodology
	5.2 TCP CUBIC and Reno throughput results
	5.3 Modeling results for wireless network
	5.4 Latency modeling errors

	6 Web: HTTP/1.1 vs HTTP/2
	6.1 Experimental setup for validation
	6.2 HTTP prediction results
	6.3 HTTP/1.1 versus HTTP/2

	7 Applications to Data Centers
	7.1 Experimental setup
	7.2 Choosing the optimal data transfer path

	8 Related Work
	9 Conclusion
	A Appendix: TCP Modeling Details
	References

