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Abstract

Generating good revenue is one of the most important problems in Bayesian auction design,
and many (approximately) optimal dominant-strategy incentive compatible (DSIC) Bayesian
mechanisms have been constructed for various auction settings. However, most existing studies
do not consider the complexity for the seller to carry out the mechanism. It is assumed that
the seller knows “each single bit” of the distributions and is able to optimize perfectly based
on the entire distributions. Unfortunately, this assumption is very strong and may not hold
in reality. For example, when the value distributions have exponentially large supports or do
not have succinct representations, it is unclear how to find the optimal allocation and prices in
many existing mechanisms.

In this work we consider, for the first time, the query complexity of Bayesian mechanisms. We
only allow the seller to have limited oracle accesses to the players’ value distributions, via quantile

queries and value queries. For a large class of auction settings, we prove logarithmic lower-bounds
for the query complexity for any DSIC Bayesian mechanism to be a constant approximation to
the optimal revenue. For single-item auctions, unit-demand auctions and additive auctions,
we prove tight upper-bounds for the query complexity by constructing efficient DSIC Bayesian
mechanisms. Finally, we show how to use our results to construct sampling mechanisms that
use polynomially many samples from the distributions. Indeed, we provide the first constructive

sampling mechanisms for unit-demand auctions and additive auctions.
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1 Introduction

An important problem in Bayesian mechanism design is to design auction mechanisms that (ap-
proximately) maximize the seller’s expected revenue. More precisely, in a Bayesian multi-item
auction a seller has m heterogenous items to sell to n players. Each player i has a private value for
each item j, vij ; and each vij is independently drawn from some prior distribution Dij . When the
prior distribution D , ⇥ijDij is of common knowledge to both the seller and the players, optimal
Bayesian incentive-compatible (BIC) mechanisms have been discovered for various auction settings
[26, 12, 3, 4], where all players reporting their true values forms a Bayesian Nash equilibrium. When
there is no common prior but the seller knows D, many (approximately) optimal dominant-strategy
incentive-compatible (DSIC) Bayesian mechanisms have been designed [26, 27, 8, 24, 30, 5], where
it is each player’s dominant strategy to report his true values.

However, the complexity for the seller to carry out such mechanisms is largely unconsidered in
the literature. Most existing Bayesian mechanisms require that the seller has full access to the prior
distribution D and is able to carry out all required optimizations based on D, so as to compute the
allocation and the prices of the auction. Unfortunately, the seller is not so knowledgeable or powerful
in many real-world scenarios. For example, if the supports of the distributions are exponentially
large (in m and n), or if the distributions are continuous and do not have succinct representations, it
is hard for the seller to write out “each single bit” of the distributions or precisely carry out arbitrary
optimizations based on them. In fact, even with a single player and a single item, when the value
distribution is irregular, computing the optimal price in time that is much smaller than the size of
the support is not an easy task. Thus, a natural and important question to ask is how much the
seller should know about the distributions in order to obtain approximately optimal revenue.

In this work we consider, for the first time, the query complexity of Bayesian mechanisms. In
particular, the seller can only access the distributions by making oracle queries. Two natural types
of queries are allowed, quantile queries and value queries. That is, the seller queries the oracle with
specific quantiles (respectively, values), and the oracle returns the corresponding values (respectively,
quantiles) in the underlying distributions.

These two types of queries happen a lot in market study. Indeed, the seller may wish to know
what is the price he should set so that half of the consumers would purchase his product; or if he
sets the price to be 200 dollars, how many consumers would buy it. Another important scenario
where such queries naturally come up is in databases. Indeed, although the seller may not know
the distribution, some powerful institutes, say the Office for National Statistics, may actually have
such information all figured out and stored in its database. As in most database applications, it
may be neither necessary nor feasible for the seller to download the whole distribution to his local
machines. Rather, he would like to access the distribution via queries to the database. Other types
of queries are of course possible, and will be considered in future works.

In this work we focus on non-adaptive queries. That is, the seller makes all oracle queries
simultaneously, before the auction starts. This is also natural in both database and market study
scenarios, and adaptive queries will again be considered in future works.

A closely related area in the literature is sampling mechanisms [11, 23, 15, 25, 14, 17]. Here it
is assumed that the seller does not know D, but is able to observe independent samples from D
before the auction begins. The sample complexity measures how many samples the seller needs so
as to obtain a good approximation to the optimal Bayesian revenue. As will become clear in the
technical part of this paper, in some sense, queries can be seen as targeted samples, where the seller
actively asks the information he needs rather than passively learns about it from random samples.
As such, it is intuitive that queries are more efficient than samples, but it is a priori unclear how
efficient queries can be. Our main results answer this question quantitatively and show that query
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complexity can be exponentially smaller than sample complexity: the former is logarithmic in the
“size” of the distributions, while the latter is polynomial. Indeed, active queries are significantly
more powerful than passive notifications.

1.1 Main Results

We would like to understand both lower- and upper-bounds for the query complexity of approxi-
mately optimal Bayesian auctions. In this work, we mainly consider three widely studied settings:
single-item auctions, unit-demand auctions, and additive auctions. Our main results, their im-
plications on sample complexity, as well as the best-known sample complexity in the literature are
summarized in Table 1. Note that we allow arbitrary unbounded distributions that satisfy small-tail
assumptions, with formal definitions deferred to Section 5.1. Similar assumptions are widely adopted
in sampling mechanisms [28, 14], to deal with irregular distributions with unbounded supports.

Auctions Distributions Query Complexity Sample Complexity

Single-Item
Regular

⌦(n✏�1

),

O(n✏�1

log

n
✏ )

⌦(max{n✏�1, ✏�3}) [11, 23],
˜O(n✏�4

) [14]
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in [1, H]

⇥(n✏�1

logH)

⌦(H✏�2
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˜O(nH✏�3
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mn logH
log c )
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mn logH
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24
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);

8c > 27, non-constructive:
˜O(nm2H2

(

c
27

� 1)

�2

)[25]

Unbounded

& Small Tail

8c > 24:

O(�n log h( 2c�48
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2c�48

3c )c2( c
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� 1)

�2

)
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mn logH
log c )
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mn logH
log(c/8) )

8c > 8:
˜O(

n2m4H2c2
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� 1

(

c+32
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1/m
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O(�m2n log h( c�8
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2

)

Table 1: Our main results. Here h(·) < 1 is the tail function in the small-tail assumptions. For
single-item auctions, the revenue is a (1 + ✏)-approximation to the optimal BIC revenue, with ✏
sufficiently small. For unit-demand and additive auctions, the revenue is a c-approximation for
some constant c. A sample contains a valuation profile of the players, that is, mn values; while a
query contains a single value or a single quantile.

Note that our lower- and upper-bounds on query complexity are tight for bounded distributions.
As will become clear in Section 3 and Appendix A, our lower-bounds allow the seller to make both
value and quantile queries, and actually apply to many other multi-player multi-item auctions, where
each player’s valuation function is succinct sub-additive: formal definitions deferred to Appendix A.
The lower-bounds also allow randomized queries and randomized mechanisms.
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For the upper-bounds, all our queries are deterministic, and our mechanisms only make one
type of queries: value queries for bounded distributions; and quantile queries in the other cases; see
Sections 4 and 5. In the construction and the analysis of our mechanisms, we show how to discretize
the value space and the quantile space of the prior distribution, while losing only a small fraction
in revenue.

Finally, the design of query mechanisms facilitates the design of sampling mechanisms. Indeed,
if the seller can observe enough samples from D, then he can mimic quantile queries and apply
query mechanisms; see Section 6 for more details. In particular, although [25] shows that it is
possible to approximate the optimal revenue using polynomially many samples, we provide the first
constructive sampling mechanisms for multi-parameter auctions, and our sampling mechanism for
unit-demand auctions has a better approximation ratio than [25].

1.2 Future Directions

As this is the first time the query complexity of Bayesian auctions is considered, many interesting
future directions are worth exploring.

First, as mentioned, we focus on non-adaptive queries in this work. One can imagine more
powerful mechanisms using adaptive queries, where the seller’s later queries depend on the oracle’s
responses to former ones. Allowing adaptive queries may further reduce the query complexity. It
is intriguing to design approximately optimal Bayesian mechanisms with adaptive queries, or prove
that even with such queries, the query complexity cannot be much better than our lower-bounds.

Another interesting direction is when the answers of the oracle contain noise. In this case,
the distributions learnt by the seller may be within a small distance from the “true distributions”
under the oracle’s precise answers. Can one design robust mechanisms that maximize the minimum
expected revenue across all possible true distributions?

Finally, if the players’ value distributions are known by some experts, then the seller can use
the experts as oracles. Indeed, we are able to design proper scoring rules [2, 7] for the seller to elicit
truthful answers from the experts for his queries. If the experts are actually players in the auctions,
then they have their own stakes about the final allocation and prices, and it would be interesting
to see how the seller can still use them as oracles and get truthful answers for his queries, while
keeping them truthful about their own values. See [10] for more discussions on this front.

1.3 Additional Related Works

The complexity of auctions is an important topic in the literature, and several complexity measures
have been considered. Following the taxation principle [19, 18], [21] defines the menu complexity
of truthful auctions. For a single additive buyer, [13] shows the optimal Bayesian auction for
revenue can have an infinite menu size or a continuum of menu entries, and [1] shows a constant
approximation under finite menu complexity. Recently, [16] considers the taxation, communication,
query and menu complexities of truthful combinatorial auctions, and shows important connections
among them. The queries considered there are totally different from ours: we are concerned with the
complexity of accessing the players’ value distributions in Bayesian settings, and [16] is concerned
with the complexity of accessing the players’ valuation functions in non-Bayesian settings.

2 Preliminaries

2.1 Bayesian Auctions

In a multi-parameter auction there are m items, denoted by M = {1, . . . ,m}, and n players,
denoted by N = {1, . . . , n}. Each player i 2 N has a non-negative value for each item j 2 M ,
vij , which is independently drawn from distribution Dij . Player i’s true valuation is (vij)j2[m]

. To
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simplify the notations, we may write vi for (vij)j2[m]

and v for (vi)i2[n]. Letting Di = ⇥j2MDij and
D = ⇥i2NDi, we use I = (N,M,D) to denote the corresponding Bayesian auction instance and
OPT (I) the optimal BIC revenue of I. When I is clear in the context, we write OPT for short.

In this work, we will consider several classes of multi-parameter auctions that are widely studied
in the literature. A single-item auction has m = 1. A unit-demand auction is such that each
player i’s value for a subset S of items is maxj2S vij , so without loss of generality the seller allocates
at most one item to each player. Finally, an additive auction is such that i’s value for S is

P
j2S vij .

2.2 Query Complexity

In this work, we only allow the seller to access the prior distributions via two types of oracle queries:
value queries and quantile queries. Given a distribution D over reals, in a value query, the seller
sends a value v 2 R and the oracle returns the corresponding quantile q(v) , Prx⇠D[x � v]. In
a quantile query, the seller sends a quantile q 2 [0, 1] and the oracle returns the corresponding
value v(q) such that Prx⇠D[x � v(q)] = q. With non-adaptive queries, the seller first sends all his
queries to the oracle, gets the answers back, and then runs the auction with the players. The query
complexity is the number of queries made by the seller.

Note that the answer to a value query is unique. The quantile queries are a bit tricky, as
for discrete distributions there may be multiple values corresponding to the same quantile q, or
there may be none. When there are multiple values, to resolve the ambiguity, let the output
of the oracle be the largest one: that is, v(q) = argmaxz{Prx⇠D[x � z] = q}. When there is
no value corresponding to q, the oracle returns the largest value whose corresponding quantile
is larger than q: that is, v(q) = argmaxz{Prx⇠D[x � z] > q}. So for any quantile query q,
v(q) = argmaxz{Prx⇠D[x � z] � q} in general. Note that for any discrete distribution D and any
quantile query q > 0, v(q) is always in the support of D. When q = 0, v(q) may be +1.

3 Lower Bounds

In this section, we prove lower bounds for the query complexity of Bayesian mechanisms, and we
focus on DSIC mechanisms. Indeed, a BIC mechanism may not be BIC any more if the seller uses
oracle queries to approximate the prior distribution D, while a DSIC mechanism continues to be
DSIC no matter which distribution the seller uses. As a building block for our general lower bound,
we first prove the following for single-item single-player auctions.

Lemma 1. For any constant c > 1, there exists a constant C such that, for any large enough H,
any DSIC Bayesian mechanism M making less than C logcH (randomized) non-adaptive value and
quantile queries to the oracle, there exists a single-player single-item Bayesian auction instance
I = (N,M,D) where the values are bounded in [1, H], such that Rev(M(I)) < OPT (I)

c .

Proof. Given c, for any constant H, let k , b1
4

log

(8c)4c+2 Hc. When H is large enough, we have

k = b logcH

4(4c+ 2) logc(8c)
c � 1.

We divide the quantile interval [0, 1] and the value interval [1, H] into k + 1 sub-intervals, with
their right-ends defined as follows: qk = 1, qs =

qs+1

(8c)4c+2 for each s 2 {k � 1, . . . , 0}, uk = H, and
us =

us+1

(4c)4c+2 for each s 2 {k � 1, . . . , 0}. It is easy to see

q
0

=

1

(8c)k(4c+2)

� H� 1
4 and u

0

=

H

(4c)k(4c+2)

� H · q
0

� H
3
4 .

From now on, we will ignore the intervals below u
0

and q
0

.
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Let c0 , 1 � 1

2c and C , 1�c0

8(4c+2) logc(8c)
=

1

16c(4c+2) logc(8c)
. We have C logcH < k(1 � c0).

Accordingly, for any DSIC Bayesian mechanism M that makes less than C logcH non-adaptive
value and quantile queries, there exist a value interval (us, us+1

) and a quantile interval (qt, qt+1

)

such that, with probability at least c0, no value in (us, us+1

) is queried and no quantile in (qt, qt+1

)

is queried either. Indeed, if this is not the case, then for any pair (us, us+1

) and (qt, qt+1

), with
probability greater than 1 � c0, either (us, us+1

) is queried or (qt, qt+1

) is queried. Since there are
k value intervals and k quantile intervals, the expected total number of queries made by M is at
least k(1� c0) > C logcH, a contradiction.

We now construct d4ce different single-player single-item Bayesian instances {Iz =

(N,M,Dz)}z2[d4ce], where the distributions outside the value range (us, us+1

) and the quantile range
(qt, qt+1

) are all the same. Given such Dz’s, with probability at least c0 = 1 � 1

2c mechanism M
cannot distinguish the Iz’s from each other. We then show that when this happens, mechanism M
cannot be a 2c-approximation for all instances Iz.

More precisely, the distribution Dz for each z 2 [d4ce] is defined in Table 2 and illustrated in
Figure 1 in Appendix A.1. Here � is a small constant whose value will be determined in the analysis.

Value vz 1 us (4c)zus us+1

Probability of vz 1� qt+1

� qt+1

� qt � 2� qt + �

Table 2: Distribution Dz.

It is easy to see that for each value query from [1, us] [ [us+1

, H], the returned quantile is the
same for all Dz’s. Moreover, when a quantile query is from [0, qt] [ [qt+1

, 1], the oracle’s answer is
again the same for all Dz’s, as illustrated in Table 3 in Appendix A.2. Accordingly, with probability
at least 1 � 1

2c , mechanism M cannot distinguish Dz’s from each other, which means it cannot
distinguish Iz’s from each other.

We now analyze the optimal BIC revenue for those instances. For any Iz, Myerson’s mechanism
is optimal: it sets a (randomized) threshold for the unique player, if the player bids at least the
threshold then he gets the item and pays the threshold payment, otherwise the item is unsold.
Letting � , 1

H , it is not hard to verify that OPT (Iz) = (4c)zus(qt+1

� �) for each Iz.
Next, we analyze the revenue of M. Since M is DSIC, the allocation rule must be monotone

in the player’s bid, and he will pay the threshold payment set by M, denoted by P . Here P may
also be randomized. Note that for all instances, setting P < 4cus is strictly worse than setting
P = 4cus, and setting P > (4c)d4ceus is strictly worse than setting P = (4c)d4ceus < us+1

. Also, for
any instance Iz and any z0 2 {1, . . . , d4ce � 1}, setting P 2 ((4c)z

0
us, (4c)z

0
+1us) is strictly worse

than setting P = (4c)z
0
+1us. Thus, when mechanism M cannot distinguish the Iz’s, it must use

the same P for all Iz’s, and the best it can do is to set P = (4c)zus with some probability ⇢z for
each z 2 [d4ce]. Because

P
z2[d4ce] ⇢z = 1, there exists z⇤ such that ⇢z⇤  1

4c . Thus we have

Rev(M(Iz⇤))  1

4c
· (4c)z⇤ · us · (qt+1

� �) + (1� 1

4c
)(4c)z

⇤�1 · us · (qt+1

� �)

<
1

2c
· (4c)z⇤ · us · (qt+1

� �) =
1

2c
OPT (Iz⇤),

where the first inequality is because for any threshold other than (4c)z
⇤
us, the resulting expected

revenue is no larger than that with the threshold being (4c)z
⇤�1us. That is, when M cannot

distinguish the Iz’s, it cannot be a 2c-approximation for Iz⇤ .
As the revenue of M under Iz⇤ is at most OPT (Iz⇤) when it is able to distinguish Iz⇤ from all
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the other instances, we have

Rev(M(Iz⇤))  (1� 1

2c
)

1

2c
OPT (Iz⇤) +

1

2c
OPT (Iz⇤) <

1

c
OPT (Iz⇤).

Thus M is not a c-approximation for Iz⇤ , and Lemma 1 holds.

Note that Lemma 1 applies to every constant approximation ratio c > 1. We extend this lemma
to arbitrary multi-player multi-item Bayesian auctions with succinct sub-additive valuations, as
follows, with the corresponding definitions and the proof of the theorem deferred to Appendix A.

Theorem 1. For any constant c > 1, there exists a constant C such that, for any n � 1,m � 1,
any large enough H, any succinct sub-additive valuation function profile v = (vi)i2[n], and any DSIC
Bayesian mechanism M making less than Cnm logcH non-adaptive value and quantile queries to the
oracle, there exists a multi-item Bayesian auction instance I = (N,M,D) with valuation profile v,
where |N | = n, |M | = m and the item values are bounded in [1, H], such that Rev(M(I)) < OPT (I)

c .

Succinct sub-additive auction is a very broad class and contains single-item, unit-demand, and
additive auctions as special cases. Thus Theorem 1 automatically applies to those cases.

4 The Query Complexity for Bounded Distributions

In this section, we consider settings where all distributions are bounded within [1, H], and we con-
struct efficient query mechanisms whose query complexity matches our lower-bounds. We show that
it is sufficient to use only value queries, and we define in Section 4.1 a universal query algorithm AV ,
which will be used as a black-box in our mechanisms. Given algorithm AV , the seller uses it to learn
a distribution D0

= ⇥i2N,j2MD0
ij that approximates the prior distribution D and is stochastically

dominated by D. The seller then runs existing DSIC Bayesian mechanisms using D0. In this sense,
all our mechanisms in this section are simple.

The multi-player single-item setting is already non-trivial, but still easy, since we have a good
understanding of the optimal mechanism, which is Myerson’s auction [26]. In particular, we make use
of the revenue monotonicity theorem of [14]. However, the situation for unit-demand and additive
auctions is much more subtle. The optimal auction could be very complicated and may involve
lotteries and bundling, and revenue monotonicity does not necessarily hold [22]. Even (disregarding
complexity issues and) assuming we can design an optimal mechanism for D0, it is not clear at all
how much revenue we can guarantee for the true distribution D. To overcome this difficulty, we
make use of recent developments on simple mechanisms with approximately optimal revenue.

The mechanism for unit-demand auctions is sequential post-price [24], thus the analysis is still
relatively easy. For additive auctions, the simple mechanism is either running Myerson’s auction
separately for each item or running the VCG mechanism with a per-player entry fee [30, 5]. The
Myerson’s auction part is easy, but the VCG mechanism with entry fee is complicated. Via an easy
and direct analysis, we lose a factor of m in the query complexity. In order to get the tight result,
we need to really open the box of the analysis and do it differently in a number of places. Due to a
lack of space, most proofs are provided in the appendix.

To sum up, our mechanisms are black-box reductions to known mechanisms, and thus simple,
natural, and easy to implement in practice, while the analysis is non-black-box, non-trivial and
interesting.
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4.1 The Value-Query Algorithm

The query algorithm AV is defined in Algorithm 1. Here D 2 �(R) is the distribution to be
queried. The algorithm takes two parameters, the value bound H and the precision factor � > 0,
makes O(log

1+� H) value queries to the oracle, and then returns a discrete distribution D0. It is
easy to verify that D0 is stochastically dominated by D.

Algorithm 1 The Value-Query Algorithm AV

Input: The value bound H and the precision factor �.
1: Let k = dlog

1+� He and define the value vector as v = (v
0

, v
1

, . . . , vk�1

, vk) = (1, (1 + �), (1 +

�)2, . . . , (1 + �)k�1, H).
2: Query the oracle for D with v, and receive a non-increasing quantile vector q =

(q(v
0

), · · · , q(vk)) = (ql)l2{0,...,k}. Note q
0

= 1.
3: Construct a discrete distribution D0 as follows: D0

(vl) = ql � ql+1

for any l 2 {0, . . . , k}, where
qk+1

, 0.
Output: Distribution D0.

4.2 Single-Item Auctions and Unit-Demand Auctions

Denoting by MMRS Myerson’s mechanism for single-item auctions, Mechanism 2 defines our effi-
cient value Myerson mechanism MEVM .

Mechanism 2 Efficient Value Myerson Mechanism MEVM

1: Given the value bound H and a constant ✏ > 0, run the value-query algorithm AV with H
and � = ✏ for each player i’s distribution Di. Denote by D0

i the returned distribution. Let
D0

= ⇥i2ND0
i.

2: Run MMRS with D0 and the players’ reported values, b = (bi)i2N , to get allocation x = (xi)i2N
and price profile p = (pi)i2N as the outcome.

It is easy to see that the query complexity of MEVM is O(n log

1+✏H), since each distribution Di

needs O(log

1+✏H) value queries in AV . Note that when ✏ is sufficiently small, O(n log

1+✏H) ⇡
O(n✏�1

logH). It is also immediate that MEVM is DSIC.
In this section and throughout the paper, we often need to analyze “mismatching” cases where

a Bayesian mechanism M uses distribution D0 while the actual Bayesian instance is I = (N,M,D)

(i.e., the players’ true values are drawn from D). We use Rev(M(I;D0
)) to denote the expected

revenue in this case. By construction, Rev(MEVM (I)) = Rev(MMRS(I;D0
)).

Because the D0 constructed in MEVM is stochastically dominated by D, letting I 0
= (N,M,D0

)

be the instance under D0, by revenue monotonicity we have Rev(MMRS(I;D0
)) � Rev(MMRS(I 0

)).
By Lemma 5 of [14], Rev(MMRS(I 0

)) � OPT (I)
1+✏ . Thus we have proved the following.

Theorem 2. 8✏ > 0, for any single-item instance I = (N,M,D) with values bounded within [1, H],
mechanism MEVM is DSIC, has query complexity O(n log

1+✏H), and Rev(MEVM (I)) � OPT (I)
1+✏ .

The construction for unit-demand auctions is similar, except the seller uses as a blackbox the
DSIC mechanism of [24], denoted by MUD. See Mechanism 3 for the resulting mechanism MEV UD.

The main difficulty for unit-demand auctions is that we do not have the revenue monotonicity
theorem as in single-item auctions. Accordingly, our analysis comes in a non-blackbox way and
relies on the COPIES setting [8, 24], which provides an upper-bound for the optimal BIC revenue.
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Mechanism 3 Mechanism MEV UD for Unit-Demand Auctions
1: Given H and ✏ > 0, run the value-query algorithm AV with H and � = ✏ for each player i’s

distribution Dij for each item j. Denote by D0
ij the returned distribution. Let D0

i = ⇥j2MD0
ij

and D0
= ⇥i2ND0

i.
2: Run MUD with D0 and the players’ reported values, b = (bij)i2N,j2M , to get allocation x =

(xij)i2N,j2M and price profile p = (pi)i2N as the outcome.

By properly upper-bounding the revenue in the COPIES setting under D0, we are able to upper-
bound the optimal BIC revenue using the expected revenue of MEV UD. More precisely, we have
the following theorem, proved in Appendix B.1.

Theorem 3. 8✏ > 0, for any unit-demand instance I = (N,M,D) with values in [1, H], mechanism
MEV UD is DSIC, has query complexity O(mn log

1+✏H), and Rev(MEV UD(I)) � OPT (I)
24(1+✏) .

Letting c = 24(1 + ✏), we have the query complexity in Table 1.

4.3 Additive Auctions

For additive auctions, denote by MA the DSIC Bayesian mechanism in [30, 5]. For any Bayesian
instance I = (N,M,D), this mechanism is such that the seller chooses between two mechanisms,
whichever generates higher expected revenue. The first is the “individual Myerson” mechanism,
denoted by MIM , which sells each item separately using Myerson’s mechanism. The second is the
VCG mechanism with optimal per-player entry fees, denoted by MBV CG.

In our mechanism MEV A that approximates mechanism MA using value queries, the seller
queries about D using algorithm AV with parameters different from before. Given the resulting
distribution D0, the seller either runs MIM or runs MBV CG as a blackbox, resulting in query
mechanisms MEV IM and MEV BV CG. We only define the latter in Mechanism 4, and the for-
mer simply replaces MBV CG with MIM . Note that Rev(MEV IM (I)) = Rev(MIM (I;D0

)) and
Rev(MEV BV CG(I)) = Rev(MBV CG(I;D0

)). However, the seller cannot compute these two reve-
nue and choose the better one, because he does not know D. Thus, we let the seller randomly choose
between the two mechanisms, according to proper probabilities that we will define in the analysis.
We have the following theorem, proved in Appendix B.2.

Mechanism 4 Mechanism MEV BV CG to Approximate MBV CG via Value Queries
1: Given H and ✏ > 0, run the value-query algorithm AV with H and � =

p
✏+ 1 � 1 for each

player i’s distribution Dij for each item j. Denote by D0
ij the returned distribution. Let

D0
i = ⇥j2MD0

ij and D0
= ⇥i2ND0

i.
2: Run MBV CG with D0 and the players’ reported values, b = (bij)i2N,j2M , to get allocation

x = (xij)i2N,j2M and price profile p = (pi)i2N as the outcome.

Theorem 4. 8✏ > 0, for any additive instance I = (N,M,D) with values in [1, H], mechanism
MEV A is DSIC, has query complexity O(mn log

1+✏H), and Rev(MEV A(I)) � OPT (I)
8(1+✏) .

Letting c = 8(1+ ✏), we have the query complexity in Table 1. The proof of Theorem 4 is much
harder than single-item and unit-demand auctions. Not only revenue monotonicity may not hold,
but also the revenue of additive auctions may not be bounded by the COPIES setting. Instead, our
analysis is based on the duality framework in [5], properly revised for our setting. Below we briefly
discuss the main ideas.
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Proof Ideas: As in [5], we only need to consider the prior distribution D with finite support. Let
Vij be the support of Dij for each player i and item j, Vi = ⇥j2MVij and V = ⇥i2NVi. In the
optimal BIC mechanism, when player i bids vi, let ⇡ij(vi) be the probability for him to get item j
and pi(vi) be his expected payment, taken over the randomness of the other players’ values and the
randomness of the mechanism. Let ⇡ = (⇡ij(vi))i2N,j2M,vi2Vi and p = (pi(vi))i2N,vi2Vi . The pair
(⇡, p) is called the reduced form (of the optimal BIC mechanism) [3].

Denote by '̃ij(vij) Myerson’s (ironed) virtual value when player i’s value on item j is vij . For any
value sub-profile v�i of the players other than i, let �ij(v�i) = maxi0 6=i vi0j : that is, the highest bid
on item j excluding player i. Moreover, let rij(v�i) = maxx��ij(v�i)

{x·Prvij⇠Dij [vij � x]}, ri(v�i) =P
j rij(v�i), ri = Ev�i⇠D�i [ri(v�i)], and finally r =

P
i ri. Note that r is the expected revenue by

running the 1-look-ahead mechanism of [27] for each item separately, and r  Rev(MIM (I)).
Next, we use a different method from [5] to partition each player i’s value space Vi into m + 1

subsets. More precisely, given � > 0 and v�i, let R
(v�i)

0

= {vi 2 Vi | vij < (1 + �)�ij(v�i), 8j}. For
any vi /2 R

(v�i)

0

, let j = argmax{vij � (1 + �)�ij(v�i)} with ties broken lexicographically, and add
vi to the set R(v�i)

j : note that vij � (1+ �)�ij(v�i) � 0 in this case. Similar to Theorem 3 of [5], the
optimal BIC revenue can be upper-bounded by the sum of the following terms, where Di(vi) and
D�i(v�i) are respectively the probabilities of vi and v�i under D, and I is the indicator function.

OPT (I) 
X

i2N

X

vi2Vi

X

j2M
Di(vi)⇡ij(vi)

✓
vij · Pr

v�i⇠D�i

[vi /2 R
(v�i)

j ] + '̃ij(vij) · Pr

v�i⇠D�i

[vi 2 R
(v�i)

j ]

◆


X

i

X

vi2Vi

X

j

Di(vi) · ⇡ij(vi) · '̃ij(vij) · Pr

v�i⇠D�i

[vi 2 R
(v�i)

j ] (Single)

+

X

i

X

vi2Vi

X

j

Di(vi) · ⇡ij(vi) ·
X

v�i2V�i

vij · D�i(v�i)Ivij<(1+�)�ij(v�i)
(Under)

+

X

i

X

vi2Vi

X

j

Di(vi) · ⇡ij(vi) ·
X

v�i2V�i

(1 + �)�ij(v�i)D�i(v�i)Ivij�(1+�)�ij(v�i)
(Over)

+

X

i

X

v�i2V�i

D�i(v�i)
X

j

X

vij>(1+�)�ij(v�i)+ri(v�i)

Dij(vij) · (vij � (1 + �)�ij(v�i))

· Pr

vi,�j⇠Di,�j

[9k 6= j, vik � (1 + �)�ik(v�i) � vij � (1 + �)�ij(v�i)] (Tail)

+

X

i

X

v�i2V�i

D�i(v�i)
X

j

X

(1+�)�ij(v�i)vij(1+�)�ij(v�i)+ri(v�i)

Dij(vij)

·(vij � (1 + �)�ij(v�i)). (Core) (1)

For the terms Single, Under, Over and Tail, we are able to upper-bound them using Rev(MEV IM (I)) =
Rev(MIM (I;D0

)), losing only an extra O(�) fraction in revenue. The Core part is the most com-
plicated, and we use MEV BV CG and MEV IM together to upper-bound it. Below we only introduce
the main ideas for bounding the Core. All the details are explained in Appendix B.

First, we show that

Rev(MEV BV CG(I)) = Rev(MBV CG(I;D0
)) �

X

i

Ev�i⇠D�iEv0i⇠D0
i
Rev(MBV CG(v

0
i, v�i;D0

)). (2)

Second, we provide a new entry fee e0i(v�i) to lower-bound Equation 2, such that for any player i
with v0i ⇠ D0

i, and any v�i, player i accepts e0i(v�i) with probability at least 1

2

. Therefore,
X

i

Ev�i⇠D�iEv0i⇠D0
i
Rev(MBV CG(v

0
i, v�i;D0

)) � 1

2

X

i

X

v�i2V�i

D�i(v�i) · e0i(v�i).

9



Finally, combining the precise formula of e0i(v�i) with the Core, we show that

Core  2(1 + �)[Rev(MEV BV CG(I)) +Rev(MEV IM (I))].

Combing all our upper-bounds for Single, Under, Over, Tail and Core gives the desired revenue
bound in Theorem 4.

5 The Query Complexity for Unbounded Distributions

Next, we construct efficient query mechanisms for arbitrary distributions whose supports can be
unbounded. For a mechanism to approximate the optimal Bayesian revenue using finite queries
to such distributions, it is intuitive that some kind of small-tail assumption for the distributions
is needed. Indeed, given any mechanism with query complexity C, there always exists a distribu-
tion that has a sufficiently small probability mass around a sufficiently large value, such that the
mechanism cannot find it using C queries. If this probability mass is where all the revenue comes
(e.g., all the remaining probability mass is around value 0), then the mechanism cannot be a good
approximation. Accordingly, following the literature, we assume the expected revenue generated
from the “tail” of the distributions is negligible compared to the optimal revenue; see Section 5.1.

For unbounded distributions, even with small-tail assumptions, it is hard to generate good
revenue with finite value queries. In fact, we show it is sufficient to use only quantile queries. As
before, the seller uses our quantile-query algorithm AQ (defined in Section 5.2) to learn a distribution
D0 that approximates D, and then reduces to simple mechanisms under D0. However, even for single-
item auctions, the analysis under quantile queries is not so simple. Indeed, under value queries,
it is easy to “under-price” the item so that the probability of sale is the same as in the optimal
mechanism for D. Under quantile queries, unfortunately under-pricing may lose a large amount of
revenue, because there is no guarantee on where the values are for given quantiles. Instead, the
main idea in using quantile queries is to “over-price” the item. This is risky in many auction design
scenarios, because it may significantly reduce the probability of sale, and thus lose a lot of revenue.
We prove a key technical lemma in Lemma 2, where we show that by discretizing the quantile space
properly, we can over-price the item while almost preserving the probability of sale as in the optimal
mechanism under D. In Lemma 4 of Appendix C, we prove another technical lemma showing that
proper over-pricing can also be done in additive auctions.

5.1 Small-Tail Assumptions

A Bayesian auction instance I satisfies the Small-Tail Assumption 1 if there exists a function1

h : (0, 1) ! (0, 1) such that, for any constant �
1

2 (0, 1) and any BIC mechanism M, letting
✏
1

= h(�
1

), we have
E

v⇠D
I9i,j,qij(vij)✏1Rev(M(v; I))  �

1

OPT (I). (3)

Here qij(vij) is the quantile of vij under distribution Dij , Rev(M(v; I)) is the revenue of M under
the Bayesian instance I when the true valuation profile is v, and I is the indicator function. For
discrete distributions, Equation 3 is imposed on the ✏

1

probability mass over the highest values.
Equation 3 immediately implies the following weaker Small-Tail Assumption 2: there exists a

function h : (0, 1) ! (0, 1) such that, for any constant �
1

2 (0, 1) , letting ✏
1

= h(�
1

), we have

E
v⇠D

I9i,j,qij(vij)✏1RevOPT (v; I) < �
1

OPT (I). (4)

1
If computation complexity is a concern, then one can further require that the function is efficiently computable.
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Here RevOPT (v; I) is the revenue generated by the optimal BIC mechanism for I when the true
valuation profile is v. Note that both small-tail assumptions are naturally satisfied when the distri-
butions have bounded supports.

5.2 The Quantile-Query Algorithm

We define our quantile-query algorithm AQ in Algorithm 5. As before, D 2 �(R) is the distribution
to be queried. The algorithm takes two parameters, the tail length ✏

1

and the precision factor �,
makes O(log

1+�
1

✏1
) quantile queries to the oracle, and then returns a discrete distribution D0.

Algorithm 5 The Quantile-Query Algorithm AQ

Input: the tail length ✏
1

and the precision factor �.
1: Let k = dlog

1+�
1

✏1
e and define the quantile vector as q = (q

0

, q
1

, . . . , qk�1

, qk) = (1, ✏
1

(1 +

�)k�1, . . . , ✏
1

(1 + �), ✏
1

).
2: Query the oracle for D with q, and receive a non-decreasing value vector (vl)l2{0,...,k}.
3: Construct a distribution D0 as follows: D0

(vl) = ql�ql+1

for each l 2 {0, . . . , k}, where qk+1

= 0.
Output: Distribution D0.

5.3 Single-Item Auctions

Mechanism 6 defines our efficient quantile Myerson mechanism MEQM , and we have the following.

Mechanism 6 Efficient Quantile Myerson Mechanism MEQM

1: Given ✏ > 0, run algorithm AQ with � =

✏
3

and ✏
1

= h( 2✏
3(1+✏)) (i.e., �

1

=

2✏
3(1+✏) for Small Tail

Assumption 2), for each player i’s distribution Di. Denote by D0
i the returned distribution. Let

D0
= ⇥i2ND0

i.
2: Run Myerson’s mechanism MMRS with D0 and the players’ reported values, b = (bi)i2N , to get

allocation x = (xi)i2N and price profile p = (pi)i2N as the outcome.

Theorem 5. 8✏ > 0, any single-item instance I = (N,M,D) satisfying Small-Tail Assumption 2,
MEQM is DSIC, has query complexity O(�n log

1+

✏
3
h( 2✏

3(1+✏))), and Rev(MEQM (I)) � OPT (I)
1+✏ .

Recall I 0
= (N,M,D0

) is the instance under D0. We first prove the following key lemma, which
is analogous to Lemma 5 of [14], but is for unbounded distributions and the quantile space.

Lemma 2. Rev(MMRS(I 0
)) � 1

1+✏OPT (I).

Proof. For each player i, denote the support of D0
i by V 0

i = (v0i;l)l2{0,...,k}. We first define a way to
couple the values v0i ⇠ D0

i with the values vi ⇠ Di.
On the one hand, for any value vi � v0i;0, let v�i be vi rounded down to the support of D0

i, such
that v�i is distributed according to D0

i whenever vi is distributed according to Di. Recall that under
value queries, v�i is simply the largest value in V 0

i that is less than or equal to vi, no matter whether
Di is continuous or discrete. Under quantile queries, when Di is continuous, the same deterministic
round-down scheme still works. However, the situation is more subtle when Di is discrete, and
we need a randomized round-down scheme to ensure the relationship between vi and v�i . More
precisely, by the definition of quantile queries, V 0

i is a subset of Di’s support. If vi is not in V 0
i , then

it is still deterministically rounded down as before. If vi is in V 0
i , say vi = v0i;l, then by the definition
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of quantile queries and the construction of D0
i, we have Prx⇠Di [x � vi] � ql = Prx⇠D0

i
[x � vi]. In

this case, vi is rounded down to v0i;l�1

(i.e., v�i = v0i;l�1

) with probability

Prx⇠Di [x � vi]� Prx⇠D0
i
[x � vi]

Di(vi)
,

and to v0i;l (i.e., v�i = v0i;l) with probability

1�
Prx⇠Di [x � vi]� Prx⇠D0

i
[x � vi]

Di(vi)
.

Following this scheme, it is not hard to verify that Prvi⇠Di [v
�
i � v0i;l] = ql for any l 2 {0, . . . , k},

thus v�i is distributed according to D0
i, as desired.

No matter what v�i is, let v+i be the smallest value in V 0
i that is strictly larger than v�i (if no

such value exists, then v+i = +1). That is, v+i � vi and v+i is vi “rounded up”, which was not
needed under value queries and is new for quantile queries.

On the other hand, for any value v0i ⇠ D0
i, let vi be resampled from Di conditional on “vi rounded

down to v0i”, so that vi is distributed according to Di whenever v0i is distributed according to D0
i.

Again, under value queries, the resampling is simply conditional on vi 2 [v0i;l, v
0
i;l+1

) when v0i = v0i;l,
no matter whether Di is continuous or discrete. Under quantile queries, this resampling scheme still
works when Di is continuous. When Di is discrete, we need to “undo” the randomized round-down
scheme defined above. More precisely, letting v0i = v0i;l, vi is set ot be v0i;l+1

with probability

p
1

=

Prx⇠Di [x � v0i;l+1

]� ql+1

D0
i(v

0
i;l)

;

is resampled from Di conditional on vi 2 (v0i;l, v
0
i;l+1

) with probability

p
2

=

Prx⇠Di [v
0
i;l < x < v0i;l+1

]

D0
i(v

0
i;l)

;

and is set to be v0i;l with probability

p
3

=

Di(v0i;l)� Prx⇠Di [x � v0i;l] + ql

D0
i(v

0
i;l)

.

Following this resampling scheme, it is not hard to verify that vi is distributed according to Di

whenever v0i is distributed according to D0
i.

Given the round-down and the resampling schemes above, we consider the Bayesian mecha-
nism M⇤ defined in Mechanism 7 for I 0, and compare its revenue with that of MMRS . We first
claim that M⇤ is a DSIC mechanism, which is proved in Appendix C.1.

Claim 1. M⇤ is DSIC.

To analyze the revenue of M⇤, note that by construction, when v0i is distributed according to D0
i,

the resampled vi in M⇤ is distributed according to Di. Moreover, each v0i is distributed as if we first
sample vi from Di and then setting v0i = v�i .

Thus, mechanism M⇤ on instance I 0 essentially generates the same expected revenue as MMRS

on instance I, except for the case when v0i < pi  vi for the winner i. Fortunately, we are able to
upper-bound the probability of this event and thus upper-bound the expected revenue loss. More
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Mechanism 7 A Bayesian mechanism M⇤ for instance I 0

1: Each player i reports his value v0i, and the mechanism discards the report that is not in V 0
i .

2: For each player i, generate value vi according to v0i using our resampling scheme.
3: Run MMRS with the value profile v and the prior distribution D, to get the price pi and the

allocation xi 2 {0, 1} for each player i.
4: If xi = 1 and pi  v0i, sell the item to i and charge him pi; otherwise, set xi = 0 and pi = 0.

precisely, for each player i, we write pi as pi(v�i;D) to emphasize that it is the threshold payment
for i given v�i and D, and does not depend on vi or v0i. We have

Rev(M⇤
(I 0

)) =

X

i

E
v�i⇠D�i

E
vi⇠Di

pi(v�i;D)Iv�i �pi(v�i;D)

=

X

i

E
v�i⇠D�i

pi(v�i;D) · Pr

vi⇠Di

[v�i � pi(v�i;D)]. (5)

Here the first equality holds because of the relationship between D0 and D as established by our
rounding and resampling schemes, and because each player i in M⇤ pays the same threshold price
as in mechanism MMRS whenever v0i is at least the threshold, and pays 0 otherwise. By the
construction of the distribution D0, we have the following claim, proved in Appendix C.1.

Claim 2. Prvi⇠Di [vi � pi(v�i;D)|qi(vi) > ✏
1

]  (1 + �) Prvi⇠Di [v
�
i � pi(v�i;D)].

Combining Equation 5, Claim 2 and Small Tail Assumption 2, we are able to lower-bound the
revenue of M⇤ as follows, which is also proved in Appendix C.1.

Claim 3. Rev(M⇤
(I 0

)) � 1

1+✏OPT (I).

By the optimality of MMRS , Rev(MMRS(I 0
)) � Rev(M⇤

(I 0
)), and Lemma 2 holds.

Proof of Theorem 5. First, mechanism MEQM is DSIC because MMRS is DSIC. Second, it is
easy to see that the query complexity of MEQM is O(�n log

1+

✏
3
h( 2✏

3(1+✏))), because there are
k + 1 = dlog

1+

✏
3

1

h( 2✏
3(1+✏) )

e + 1 quantile queries for each player and there are n players in total. By

definition, Rev(MEQM (I)) = Rev(MMRS(I;D0
)). By construction, D0 is stochastically dominated

by D. Thus by the revenue monotonicity theorem of [14], Rev(MMRS(I;D0
)) � Rev(MMRS(I 0

)).
Combining these two equations with Lemma 2, Theorem 5 holds.

Mechanism MEQM and Theorem 5 immediately extend to single-parameter downward-closed
settings. Finally, when the distributions are regular, we are able to prove an even better query
complexity and a matching lower-bound; see Section 7.

5.4 Unit-Demand Auctions

The unit-demand mechanism MEQUD is very similar (see Mechanism 8), and we have the following.

Theorem 6. 8✏ > 0, any unit-demand instance I = (N,M,D) satisfying Small-Tail Assumption 2,
MEQUD is DSIC, has query complexity O(�mn log

1+

✏
3
h( 2✏

3(1+✏))), and Rev(MEQUD(I)) � OPT (I)
24(1+✏) .

The proof of Theorem 6 is similar to that of Theorem 3, except that we replace the use of
Lemma 5 of [14] by our Lemma 2, and the round-down scheme is replaced by the randomized
round-down scheme designed in the proof of Lemma 2. Thus the details have been omitted.
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Mechanism 8 Mechanism MEQUD for Unit-Demand Auctions
1: Given ✏ > 0, run algorithm AQ with � =

✏
3

and ✏
1

= h( 2✏
3(1+✏)) (i.e., �

1

=

2✏
3(1+✏) for Small Tail

Assumption 2), for each player i’s distribution Dij on each item j. Denote by D0
ij the returned

distribution. Let D0
i = ⇥j2MD0

ij and D0
= ⇥i2ND0

i.
2: Run mechanism MUD with D0 and the players’ reported values, b = (bij)i2N,j2M , to get allo-

cation x = (xij)i2N,j2M and price profile p = (pi)i2N as the outcome.

5.5 Additive Auctions

For additive auctions, we cannot use Small-Tail Assumption 2, because it does not imply that the
revenue loss on the tail by running MBV CG is much less than the revenue of the optimal mechanism.
To approximate MBV CG, not only we need Small-Tail Assumption 1, but we also approximate D
by running the quantile-query algorithm AQ with different parameters. The resulting mechanism
MEQBV CG is defined in Mechanism 9, and the mechanism MEQIM simply replaces MBV CG with
MIM . Again, since the seller cannot compute the expected revenue of query mechanisms without
knowing D, in the final mechanism MEQA the seller randomly chooses between the two query
mechanisms above, according to proper probabilities defined in the analysis. We have the following
theorem, proved in Appendix C.2.

Mechanism 9 Mechanism MEQBV CG for Additive Auctions
1: Given ✏ > 0, run algorithm AQ with � = (1 +

✏
5

)

1/m � 1 and ✏
1

= h( ✏
10(1+✏)) (i.e., �

1

=

✏
10(1+✏)

for Small Tail Assumption 1), for each player i’s distribution Dij on each item j. Denote by D0
ij

the returned distribution. Let D0
i = ⇥j2MD0

ij and D0
= ⇥i2ND0

i.
2: Run MBV CG with D0 and the players’ reported values, b = (bij)i2N,j2M , to get allocation

x = (xij)i2N,j2M and price profile p = (pi)i2N as the outcome.

Theorem 7. 8✏ > 0, any additive instance I = (N,M,D) satisfying Small-Tail Assumption 1,
MEQA is DSIC, has query complexity O(�m2n log

1+

✏
5
h( ✏

10(1+✏)), and Rev(MEQA(I)) � OPT (I)
8(1+✏) .

As shown in Theorem 7, the query complexity of mechanism MEQA has an extra factor of m
compared with that of MEV A (and the lower bound). However, the advantages of using quantile
queries are not only that we can handle unbounded distributions, but also that we can use the
resulting query mechanisms to construct sampling mechanisms. See Section 6 for more details.

5.6 Using Quantile Queries for Bounded Distributions

As a corollary, Theorems 5, 6 and 7 also provide another way to approximate the optimal reve-
nue using only quantile queries when the distributions are bounded. More precisely, we have the
following, proved in Appendix C.3.

Corollary 1. For any ✏ > 0, H > 1, and prior distribution D with each Dij bounded within
[1, H], there exist DSIC mechanisms that use O(mn log

1+✏
nmH(1+✏)

✏ ) quantile queries for single-item
auctions and unit-demand auctions, and use O(m2n log

1+✏
nmH(1+✏)

✏ ) quantile queries for additive
auctions, whose approximation ratios to OPT are respectively 1 + ✏, 24(1 + ✏) and 8(1 + ✏).
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6 Applications: Constructive Sampling Mechanisms

Using our techniques for query complexity, we can easily construct sampling mechanisms for multi-
parameter auctions. Currently, the sample complexity for unit-demand auctions and bounded dis-
tributions has been upper-bounded in [25] via PAC learning approaches, but is not constructive.
In this section, we explicitly construct sampling mechanisms for both unit-demand and additive
auctions, for arbitrary distributions with small-tails (and for bounded distributions).

The idea is to use samples to approximate quantile queries. Mechanism 10 defines our sampling
mechanism MSM . Recall that mechanisms MMRS , MUD and MA are known (approximately)
optimal DSIC mechanisms for single-item, unit-demand and additive auctions respectively. Note
that in mechanism MSM , we use a different method to discretize the quantile space for additive
auctions, so as to further reduce its sample complexity. In particular, we have the following theorem,
proved in Appendix D.

Mechanism 10 Sampling Mechanism MSM for Single-Item/Unit-Demand/Additive Auctions
1: For single-item auctions and unit-demand auctions, given ✏ > 0, set � =

✏
6

, ✏
1

= h( 2✏
3(1+✏))

and k = dlog
1+�

1

✏1
e; define the quantile vector as q = (q

0

, q
1

, . . . , qk�1

, qk) = (1, ✏
1

(1 +

�)k�1, . . . , ✏
1

(1 + �), ✏
1

).
For additive auctions, given ✏ > 0, set ✏

1

= h( ✏
10(1+✏)) and k = b 1

✏1
c; define the quantile vector

as q = (q
0

, q
1

, . . . , qk�1

, qk) = (1, k✏
1

, . . . , 2✏
1

, ✏
1

).
2: For each player i and item j, given t samples V t

ij = {v1ij , . . . , vtij}, without loss of generality
assume v1ij � v2ij � · · · � vtij . For each quantile ql, set vtqlij to be the value corresponding to the
quantile query ql. (If tql is not an integer then the mechanism takes dtqle.)

3: Construct a discrete distribution D0
ij as follows: D0

ij(v
tql
ij ) = ql� ql+1

for each l 2 {0, . . . , k� 1},
and D0

ij(v
tqk
ij ) = ✏

1

. Finally, let D0
i = ⇥j2MD0

ij for each player i and let D0
= ⇥i2ND0

i.
4: Run MMRS/MUD/MA with distribution D0 and the players’ reported values.

Theorem 8. 8✏ > 0 and � 2 (0, 1), for any Bayesian instance I = (N,M,D) satisfying Small-Tail
Assumption 2, with ˜O(h�2

(

2✏
3(1+✏)) · (

✏
1+✏)

�2

) samples, with probability at least 1 � �, mechanism

MSM achieves revenue at least OPT (I)
1+✏ for single-item auctions and revenue at least OPT (I)

24(1+✏) for
unit-demand auctions.

For any Bayesian instance I = (N,M,D) satisfying Small-Tail Assumption 1, with ˜O(h�2

(

✏
10(1+✏))(

1

2

�
1

1+(1+

✏
5 )

1/m ))

�2

) samples, with probability at least 1� �, mechanism MSM achieves revenue at least
OPT (I)
8(1+✏) for additive auctions.

Remark. Following the convention in the literature, a logarithmic factor depending on � has
been absorbed in ˜O(·). If the values are bounded in [1, H], by defining the tail function h according
to H, the resulting sample complexity is ˜O(m4n2H2

(1 + ✏)4✏�4

) for unit-demand auctions and
˜O(m4n2H2

(

1+✏
✏ )

2

(

1

2

� 1

1+(1+

✏
5 )

1/m ))

�2

) for additive auctions. Note that the upper-bound for unit-
demand auctions is weaker than the one in [25], but our mechanisms are constructive. Finally, for
bounded distributions and ✏ < 1, combining our techniques and the result of [14], we can construct
another sampling mechanism for unit-demand auctions with sample complexity ˜O(mnH✏�3

).
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7 Single-Item Auctions with Regular Distributions

In the literature of Bayesian auction design, regular distributions are an important class and have
been widely studied. In this section, we show that when we only consider regular distributions
for single-item auctions, the query complexity can be much lower. In fact, we no longer need the
small-tail assumptions even when the supports are unbounded. Here our lower- and upper-bounds
are tight upto a logarithmic factor, and require different techniques from previous sections.

For the lower-bound, recall that in Section 3 we allow the distributions to be irregular. To
construct the desired distributions, we can first find the un-queried quantile interval and then
move the probability mass from its end points to internal points. Because the distributions can
be irregular, we have complete control on where to put the probability mass. However, if the
distributions have to be regular then this cannot be done. Instead, we start from two different
single-peak revenue curves and construct regular distributions from them. We still want to move
probability mass from the end points of the un-queried quantile interval to internal points, but such
moves must be continuous in order to preserve regularity.

For the upper-bound, we show that regular distributions satisfy the small-tail property with a
properly defined tail function. Thus our results for distributions with small-tails directly apply here.

7.1 Lower Bound

With regular distributions, by [15] it is sufficient to use a single sample to achieve 2-approximation in
revenue for single-player single-item auctions. Because every distribution is a uniform distribution
in the quantile space, a sample for such auctions can be obtained by first choosing a quantile q
uniformly at random from [0, 1] and then making a quantile query. Thus, a single query is also
sufficient for 2-approximation in this case. As such, unlike Theorem 1 where we have proved lower
bounds for the query complexity for arbitrary constant approximations, for regular distributions we
consider lower bounds for (1 + ✏)-approximations, where ✏ is sufficiently small. More precisely, we
have the following theorem, which is proved in Appendix E.

Theorem 9. For any constant ✏ 2 (0, 1

64

), there exists a constant C such that, for any n � 1, any
DSIC Bayesian mechanism M making less than Cn✏�1 non-adaptive value and quantile queries to
the oracle, there exists a multi-player single-item Bayesian auction instance I = (N,M,D) where
|N | = n and D is regular, such that Rev(M(I)) < OPT (I)

1+✏ .

7.2 Upper Bound

Our mechanism MEMR (i.e., “Efficient quantile Myerson mechanism for Regular distributions”) first
constructs the distribution D0 that approximates D using the quantile-query algorithm AQ with
parameters � =

✏
4

and ✏
1

=

✏2

256n ; and then runs Myerson’s mechanism MMRS on D0. Formally, we
have the following theorem, proved in Appendix E.

Theorem 10. 8✏ 2 (0, 1), and for any single-item instance I = (N,M,D) where D is regular,
mechanism MEMR is DSIC, has query complexity O(n log

1+✏
n
✏ ), and Rev(MEMR(I)) � OPT (I)

1+✏ .

Remark. Regular distributions are also well-studied in the sample complexity for single-item
auctions. Following [11, 23, 14], the sample complexity in this setting is bounded between ⌦(max{n✏�1, ✏�3})
and ˜O(n✏�4

). However, each sample is a valuation profile of the players, and thus contains n values.
When ✏ is small, the query complexity in this setting is O(n✏�1

log

n
✏ ). Thus the query complexity

is still much lower than the sample complexity.
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A Missing Materials for Section 3

A.1 Missing Figure

The cumulative probability function of each distribution Dz is illustrated in Figure 1.

-

6

1� qt+1

1� qt+1

+ �

1� qt � �

1

Fz(vz)

1 us (4c)zus us+1

H vz0

Figure 1: The cumulative probability function of Dz.

A.2 Missing Table

The quantile queries and corresponding answers for the Dz’s are illustrated in Table 3.

Quantile queries Corresponding values Oracle’s answer
0 (us+1

,+1) +1
(0, qt + �) ; us+1

qt + � ((4c)zus, us+1

] us+1

(qt + �, qt+1

� �) ; (4c)zus
qt+1

� � (us, (4c)zus] (4c)zus
(qt+1

� �, qt+1

) ; us
qt+1

(1, us] us
(qt+1

, 1) ; 1

1 1 1

Table 3: Quantile queries and corresponding answers for Dz.

A.3 Missing Definitions and Proofs

A very broad class of Bayesian auctions, (monotone) sub-additive auctions, is such that each player i
has a valuation function vi : 2[m] ! R, which satisfies vi(S) + vi(T ) � vi(S [ T ) � vi(S) � 0 for
any subsets of items S and T . As such a valuation function in general needs 2

m values to describe,
following the conventions in Bayesian auction design [29, 9, 6], we will consider succinct sub-additive
auctions, where only the item-values, that is, the vij ’s, are independently drawn from the underlying
distribution D = ⇥i2[n],j2[m]

Dij . Given (vij)j2[m]

, it is publicly known how to compute player i’s
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value for any subset of items. That is, the valuation function vi now takes a vector of item-values
(vij)j2[m]

and a subset S ✓ [m] as inputs, such that for any vector (vij)j2[m]

, the resulting function
vi((vij)j2[m]

, ·) is sub-additive and vi((vij)j2[m]

, {j}) = vij for each item j. Note that such auctions
include single-item, unit-demand and additive auctions as special cases.

Theorem 1 (restated). For any constant c > 1, there exists a constant C such that, for
any n � 1,m � 1, any large enough H, any succinct sub-additive valuation function profile v =

(vi)i2[n], and any DSIC Bayesian mechanism M making less than Cnm logcH non-adaptive value
and quantile queries to the oracle, there exists a multi-item Bayesian auction instance I = (N,M,D)

with valuation profile v, where |N | = n, |M | = m and the item values are bounded in [1, H], such
that Rev(M(I)) < OPT (I)

c .

Proof. Similar to the proof of Lemma 1, for any H, let k , b1
4

log

(8c)4c+2 Hc and C , 1

24c(4c+2) logc(8c)
.

Let H be large enough so that k � 1. It is easy to see that Cnm logcH < nmk
3c . Thus, for any DSIC

Bayesian mechanism M that makes less than Cnm logcH non-adaptive value and quantile queries,
there exists a player-item pair (i⇤, j⇤), a value interval (us, us+1

) and a quantile interval (qt, qt+1

)

such that, with probability at least 1� 1

3c , M does not query these two intervals for player i⇤’s value
distribution for item j⇤. We will focus on i⇤, j⇤ and the two intervals, and show that M cannot
generate good revenue from them.

We construct d4ce Bayesian instances, Iz
= (N,M,Dz

) with z 2 [d4ce], where each Dz
=

⇥i2[n],j2[m]

Dz
ij is the prior distribution for the players’ item values. For each z, i, j, the distribution

Dz
ij is constantly 1 if i 6= i⇤ or j 6= j⇤. Let Dz

i⇤j⇤ be the distribution Dz defined in Table 2.
Given any succinct sub-additive valuation function profile v = (vi)i2[n] where each vi takes a

vector of item-values (vij)j2[m]

as part of its input, we would like to compare the optimal revenue for
the sub-additive instances defined by the Iz’s with the corresponding expected revenue of M. By
construction, the Dz’s differ only at the Dz

i⇤j⇤ ’s, within the value interval (us, us+1

) and the quantile
interval (qt, qt+1

). Accordingly, with probability at least 1 � 1

3c , mechanism M cannot distinguish
the Iz’s from each other. Eventually, we will analyze the revenue of M conditional on this event
happening.

For now, to compare the optimal revenue and that of M, let us first introduce some notations.
For any item-value profile v̂ = (v̂ij)i2[n],j2[m]

, when the players bid v̂, we denote by xi(v̂) the
(randomized) allocation of M to a player i. It is defined by the probabilities �iS(v̂) for all the
subsets S ✓ [m]: each �iS(v̂) is the probability that player i receives S under bid v̂. Accordingly,
the expected value of player i for allocation xi(v̂) is vi((v̂ij)j2[m]

, xi(v̂)) =
P

S vi((v̂ij)j2[m]

, S)·�iS(v̂).
Moreover, for each item j, let xij(v̂) be the probability that player i receives item j according to
xi(v̂): that is, xij(v̂) =

P
S:j2S �iS(v̂).

We upper-bound the revenue of M in three steps. To begin with, we reduce the multi-player sub-
additive instances to single-player sub-additive instances, and construct a DSIC Bayesian mechanism
M⇤ that only sells the items to player i⇤. Given any instance Iz, mechanism M⇤ runs on the
single-player sub-additive instance Iz

i⇤ = ({i⇤},M,Dz
i⇤). It first simulates the item values of players

in N \ {i⇤}, which are all 1’s, and then runs M. Mechanism M⇤ answers the oracle queries of M
truthfully. The allocation and the payment for player i⇤ under M⇤ is the same as those under M.
For any player i 6= i⇤, mechanism M⇤ assigns nothing to him and charges him 0, because i is an
imaginary player to M⇤. It is easy to see that mechanism M⇤ is DSIC. Moreover,

Rev(M⇤
(Iz

i⇤)) � Rev(M(Iz
))� Ev̂⇠Dz

X

i 6=i⇤

vi((v̂ij)j2[m]

, xi(v̂)), (6)
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because the revenue generated by M from players in N \ {i⇤} is at most their total value for the
allocation.

Next, we reduce the single-player sub-additive instances to single-player additive instances, and
construct a DSIC Bayesian mechanism M+ that runs on the single-player additive instances I+z

i⇤ =

({i⇤},M,Dz
i⇤), with z 2 [d4ce]. Note that each I+z

i⇤ has the same item-value distributions as Iz
i⇤ ,

but player i⇤’s value for any subset of items is additive.
For each single-player sub-additive instance defined by Iz

i⇤ and the valuation function profile v,
by the taxation principle [18], mechanism M⇤ is equivalent to providing a menu of options to player
i⇤ and then letting i⇤ choose a menu entry maximizing his expected utility according to his true
valuation. Given any instance I+z

i⇤ , mechanism M+ provides the same menu as mechanism M⇤

under Iz
i⇤ and v, except that the payment in each entry is discounted by a multiplicative 1� ✏̂. Here

✏̂ is a sufficiently small constant in (0, 1) to be determined later in the analysis. The truthfulness
of M+ is immediate, because it lets i⇤ choose a menu entry maximizing his expected utility under
his true additive values. Let

¯� , Ev̂i⇤⇠Dz
i⇤

max

S✓[m]

(

X

j2S
v̂i⇤j � vi⇤((v̂i⇤j)j2[m]

, S)),

the expected maximum difference between the additive values and the succinct sub-additive values.
Following Lemma 3.4 in [29], which compares the revenue in the sub-additive instance with that in
the corresponding additive instance, we have

Rev(M+

(I+z
i⇤ )) � (1� ✏̂)(Rev(M⇤

(Iz
i⇤))� ¯�/✏̂). (7)

Finally, we reduce the single-player additive instances to single-player single-item instances, and
construct a DSIC Bayesian mechanism M0 that only sells item j⇤ to player i⇤. Mechanism M0

runs on the single-player single-item instances Iz
i⇤j⇤ = ({i⇤}, {j⇤},Dz

i⇤j⇤), with z 2 [d4ce]. Given
any Iz

i⇤j⇤ , it first lets player i⇤ report v̂i⇤j⇤ . Then it simulates the v̂i⇤j ’s from Dz
i⇤j for j 6= j⇤, which

are all 1’s, and runs M+ on the augmented additive instance I+z
i⇤ to obtain allocation x+i⇤(v̂i⇤) and

payment p+i⇤(v̂i⇤). For each item j, let x+i⇤j(v̂i⇤) be the probability that player i⇤ receives item j in
the allocation. Mechanism M0 sets its outcome to be the following:

• x0i⇤j⇤(v̂i⇤j⇤) = x+i⇤j⇤(v̂i⇤); and

• p0i⇤(v̂i⇤j⇤) = p+i⇤(v̂i⇤)�
P

j2[m]\{j⇤} v̂i⇤jx
+

i⇤j(v̂i⇤).

Note that p0i⇤(v̂i⇤j⇤) may be negative. By Lemma 21 of [20], mechanism M0 is DSIC and

Rev(M0
(Iz

i⇤j⇤)) � Rev(M+

(I+z
i⇤ ))�

X

j 6=j⇤

Ev̂i⇤j⇠Dz
i⇤j

v̂i⇤j . (8)

Now we combine the above three reduction steps together and consider the event when mecha-
nism M cannot distinguish the Iz’s from each other. When this happens, mechanism M produces
the same outcome for all the instances. Accordingly, although mechanism M⇤ is given the distri-
butions Dz

i⇤ , by simulating M, it still produces the same outcome for all the Iz
i⇤ ’s, thus the same

menu for all of them. So mechanism M+ also produces the same menu for all the I+z
i⇤ ’s: that is, the

menu produced by M⇤ with the payments discounted by 1 � ✏̂. As a result, although mechanism
M0 is given the Dz

i⇤j⇤ ’s, it still cannot “distinguish” the Iz
i⇤j⇤ ’s from each other and produces the

same outcome for all of them. Following the proof of Lemma 1, in this case there exists z⇤ 2 [d4ce]
such that

Rev(M0
(Iz⇤

i⇤j⇤)) <
1

2c
OPT (Iz⇤

i⇤j⇤).
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Combining this inequality with Equations 6, 7 and 8, we have

Rev(M(Iz⇤
))  Rev(M⇤

(Iz⇤
i⇤ )) + Ev̂⇠Dz⇤

X

i 6=i⇤

vi((v̂ij)j2[m]

, xi(v̂))


Rev(M+

(I+z⇤

i⇤ ))

1� ✏̂
+

¯�/✏̂+ Ev̂⇠Dz⇤
X

i 6=i⇤

vi((v̂ij)j2[m]

, xi(v̂))

 1

1� ✏̂

0

@Rev(M0
(Iz⇤

i⇤j⇤)) +
X

j 6=j⇤

Ev̂i⇤j⇠Dz⇤
i⇤j

v̂i⇤j

1

A
+

¯�/✏̂+ Ev̂⇠Dz⇤
X

i 6=i⇤

vi((v̂ij)j2[m]

, xi(v̂))

<
1

1� ✏̂

0

@ 1

2c
OPT (Iz⇤

i⇤j⇤) +
X

j 6=j⇤

Ev̂i⇤j⇠Dz⇤
i⇤j

v̂i⇤j

1

A
+

¯�/✏̂+ Ev̂⇠Dz⇤
X

i 6=i⇤

vi((v̂ij)j2[m]

, xi(v̂)). (9)

Note that OPT (Iz⇤
i⇤j⇤)  OPT (Iz⇤

), since selling a single item to a single player is a feasible
outcome. Moreover, since Dz⇤

ij is constantly 1 when i 6= i⇤ or j 6= j⇤, and since the valuation function
profile v is succinct sub-additive, we have

X

j 6=j⇤

Ev̂i⇤j⇠Dz⇤
i⇤j

v̂i⇤j = m� 1,

¯�/✏̂ =
1

✏̂
Ev̂i⇤⇠Dz⇤

i⇤
max

S✓[m]

(

X

j2S
v̂i⇤j � vi⇤((v̂i⇤j)j2[m]

, S))  m� 1

✏̂
, and

Ev̂⇠Dz⇤
X

i 6=i⇤

vi((v̂ij)j2[m]

, xi(v̂))  m.

Here the second equation is because
P

j2S v̂i⇤j � vi⇤((v̂i⇤j)j2[m]

, S)  m� 1 for any v̂i⇤ and S. The
third equation is because

P
i 6=i⇤ vi((v̂ij)j2[m]

, xi(v̂))  m for any v̂: indeed, each item can be sold
to at most one player, generating value 1.

Combining the equations above with Equation 9, we have

Rev(M(Iz⇤
)) <

1

1� ✏̂

✓
1

2c
OPT (Iz⇤

) +m� 1

◆
+

m� 1

✏̂
+m.

Setting ✏̂ = 1

4

, we have

Rev(M(Iz⇤
)) <

2

3c
OPT (Iz⇤

) +

19m

3

. (10)

Finally, we combine Equation 10 with the probability that M cannot distinguish the Iz’s, which
is 1 � 1

3c . Recall from the proof of Lemma 1 that q
0

� H� 1
4 and u

0

� H
3
4 . By selling item j⇤ to

player i⇤ at price u
0

, we have OPT (Iz⇤
) � u

0

q
0

�
p
H. When H > (

57

2

mc2)2, OPT (Iz⇤
) > 57

2

mc2

and
Rev(M(Iz⇤

))  (1� 1

3c
)(

2

3c
OPT (Iz⇤

) +

19m

3

) +

1

3c
OPT (Iz⇤

) <
1

c
OPT (Iz⇤

).

This concludes the proof of Theorem 1.

Note that Theorem 1 applies to every succinct sub-additive valuation function profile. Since
such auctions contain single-item, unit-demand, and additive auctions as special cases, Theorem 1
automatically applies to those cases.
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B Missing Proofs for Section 4

B.1 Unit-Demand Auctions

Before analyzing mechanism MEV UD, let us first recall the sequential post-price mechanism MUD.
This mechanism processes the players one by one according to an arbitrary order, computes a price
for each player i based on remaining items, remaining players and the prior distribution, and lets i
choose his utility-maximizing item (or choose none). The revenue of this mechanism is analyzed by
reducing the unit-demand instance to the COPIES setting, which we introduce below.

For a unit-demand auction instance I = (N,M,D), the corresponding COPIES instance is
denoted by ICP

= (NCP ,MCP ,D), where each player i 2 N has m copies and each item j 2 M
has n copies, and player i’s copy j is only interested in item j’s copy i, with value vij drawn
independently from Dij . Thus NCP

= MCP
= N ⇥ M , and ICP is a single-parameter instance.

Denote by Ni the set of player i’s copies and by Mj the set of item j’s copies. Note that both
{Ni}i2N and {Mj}j2M are partitions of NCP (and MCP ). Two natural constraints are imposed on
feasible allocations under the COPIES setting, so as to connect it with the original unit-demand
setting: (1) for each player i, at most one of his copies gets an item; and (2) for each item j, at most
one of its copies gets allocated. Accordingly, letting qs be the probability that a feasible mechanism
allocates an item to a player copy s 2 NCP , we have

P
s2Ni

qs  1 for each i 2 N and
P

s2Mj
qs  1

for each j 2 M .
The corresponding mechanism MCP

UD for the COPIES setting works in the same way as MUD,
except that it considers an arbitrary order of the players in NCP , thus different copies of the same
player may not be processed together. When evaluating the performance of mechanism MCP

UD, the
order of the players is chosen by an online adaptive adversary, who tries to minimize the expected
revenue of the mechanism. Because this adversary is the worst-case for mechanism MCP

UD,

Rev(MUD(I;D0
)) � Rev(MCP

UD(ICP
;D0

))

for any distribution D0, where the latter is the expected revenue of MCP
UD under the online adaptive

adversary. Indeed, mechanism MUD can be considered as MCP
UD under a specific order where all

copies of each player come together, thus the revenue is at least that when the order of NCP is
adaptively chosen by the adversary. Now we are ready to prove Theorem 3.

Theorem 3 (restated). 8✏ > 0, for any unit-demand Bayesian instance I = (N,M,D) with values
bounded within [1, H], mechanism MEV UD is DSIC, has query complexity O(mn log

1+✏H), and

Rev(MEV UD(I)) �
1

24(1 + ✏)
OPT (I).

Proof. It is easy to see that the query complexity of MEV UD is O(mn log

1+✏H), since each distri-
bution Dij needs O(log

1+✏H) value queries. Also, it is immediate that MEV UD is DSIC.
Below we prove the revenue bound. By construction,

Rev(MEV UD(I)) = Rev(MUD(I;D0
)). (11)

Let I 0
= (N,M,D0

) and I 0CP
= (NCP ,MCP ,D0

). We state the following key lemma, which is
proved after the proof of Theorem 3.

Lemma 3. Rev(MUD(I;D0
)) � Rev(MCP

UD(ICP
;D0

)) = Rev(MCP
UD(I 0CP

)).
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By Theorem 1 of [24], the sequential post-price mechanism is at least a 6-approximation to the
optimal BIC revenue in the COPIES setting. Thus

Rev(MCP
UD(I 0CP

)) � 1

6

OPT (I 0CP
). (12)

Next, because the COPIES setting is a single-parameter setting, and because of the way we discretize
the value space in algorithm AV , by Lemma 5 of [14] we have

OPT (I 0CP
) � 1

1 + ✏
OPT (ICP

). (13)

Finally, by Theorem 6 of [5], the optimal BIC revenue in the COPIES setting is a 4-approximation
to the optimal BIC revenue in the original unit-demand setting. Thus

OPT (ICP
) � 1

4

OPT (I). (14)

Combining Equations 11, 12, 13, 14 and Lemma 3, Theorem 3 holds.

Proof of Lemma 3. The inequality is already explained. Now we prove the equality. For any value
profile v ⇠ D, let v0 be v rounded down to the support of D0. That is, for each vij , v0ij is the largest
value in the support of D0

ij that is less than or equal to vij . Recall that the support of D0
ij is the set

{v
0

, · · · , vk} as defined in the query algorithm AV . By the definition of D0
ij , for any 0  l  k � 1,

Pr

vij⇠Dij

[v0ij = vl] = Pr

vij⇠Dij

[vij � vl]� Pr

vij⇠Dij

[vij � vl+1

] = q(vl)� q(vl+1

) = ql � ql+1

= D0
ij(vl),

and
Pr

vij⇠Dij

[v0ij = vk] = Pr

vij⇠Dij

[vij � vk] = q(vk) = qk = D0
ij(vk).

That is, if v is distributed according to D then v0 is distributed according to D0.
For any value profile v and the corresponding v0, arbitrarily fix an order � of the players in NCP ,

which is a bijection from {1, · · · ,mn} to {1, · · · ,mn}. Without loss of generality, each player �(s)
gets the corresponding item �(s) whenever his true value is greater than or equal to the posted price
for him. Below we show that mechanism MCP

UD produces the same outcome no matter the players’
true values are v or v0. That is, for any s 2 {1, . . . ,mn}, (1) MCP

UD produces the same price p�(s)
under v and v0 for player �(s), and (2) v�(s) � p�(s) if and only if v0�(s) � p�(s).

To prove these two properties, note that by the construction of mechanism MCP
UD, the price p�(s)

posted to �(s) depends only on the distribution D0 and the set A�(s) of items sold to the players
arriving before �(s). Here p�(s) may be randomized if D0

�(s) is irregular, but it always takes value
in the support of D0

�(s) (except that, if selling the corresponding item �(s) to player �(s) is not
feasible anymore, then p�(s) = +1).

We prove the two desired properties by induction. When s = 1, property (1) trivially holds,
because A�(1) = ; under both value profiles. Furthermore, because a realization of p�(1) is always
in the support of D0

�(1), and because v0�(1) is v�(1) rounded down to the support of D0
�(1), property

(2) holds when s = 1.
Now assume (1) and (2) hold for any s  t with t < mn. We show they also hold for s = t+ 1.

Indeed, the inductive hypothesis implies that for any s  t, A�(s) is the same under the two value
profiles. In particular, A�(t+1)

is the same, which means the price p�(t+1)

is the same. Thus property
(1) holds. Property (2) also holds because a realization of p�(t+1)

is always in the support of D0
�(t+1)

.
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In sum, for any order �, mechanism MCP
UD produces the same outcome under the two value profiles

v and v0, thus the same revenue.
Accordingly, under the online adaptive adversary for (ICP

;D0
), the revenue Rev(MCP

UD(ICP
;D0

))

is the same as the revenue when the players’ true values are obtained by rounding v ⇠ D to v0.
Because the resulting v0 is distributed according to D0, Rev(MCP

UD(ICP
;D0

)) is at least the expected
revenue of MCP

UD under the online adaptive adversary for I 0CP . Indeed, a randomized adversary
for I 0CP can simulate the adversary for (ICP

;D0
): in each step, given v0s with s 2 NCP being the

player in this step, the former first samples vs from Ds conditional on vs rounded down to v0s, and
then uses the latter to decide which player arrives next. Thus,

Rev(MCP
UD(ICP

;D0
)) � Rev(MCP

UD(I 0CP
)).

Similarly,
Rev(MCP

UD(ICP
;D0

))  Rev(MCP
UD(I 0CP

)).

Therefore Rev(MCP
UD(ICP

;D0
)) = Rev(MCP

UD(I 0CP
)) and Lemma 3 holds.

B.2 Additive Auctions

Theorem 4 (restated). 8✏ > 0, for any additive instance I = (N,M,D) with values in [1, H],
mechanism MEV A is DSIC, has query complexity O(mn log

1+✏H), and

Rev(MEV A(I)) �
OPT (I)
8(1 + ✏)

.

Proof. First, it is easy to see that the query complexity of mechanism MEV A is O(mn log

1+� H),
since there are in total mn distributions and each one of them needs O(log

1+� H) value queries
in the algorithm AV . Since � =

p
✏+ 1 � 1, O(mn log

1+� H) = O(mn log

1+✏H). Second, since
mechanisms MBV CG and MIM are both DSIC, MEV A is DSIC.

Recall that mechanism MEV A randomly chooses between running MEV IM and running MEV BV CG.
Therefore, to upper-bound the optimal revenue OPT (I) using Rev(MEV A(I)), we only need to
upper-bound each term in Equation 1 of Section 4.3 using Rev(MEV IM (I)) and Rev(MEV BV CG(I)).

Note that when MEV IM uses the value-query algorithm AV to learn a distribution, the pa-
rameters are also set to be H and � =

p
✏+ 1 � 1. Thus, applying Theorem 2 to each item, we

have
Rev(MIM (I))  (1 + �)Rev(MEV IM (I)).

Following Lemma 13 of [5], although the term Single has changed from its original form, we still
have

Single =

X

i

X

vi2Vi

X

j

Di(vi) · ⇡ij(vi) · '̃ij(vij) · Pr

v�i⇠D�i

[vi 2 R
(v�i)

j ]

 Rev(MIM (I))  (1 + �)Rev(MEV IM (I)). (15)
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Next, using Lemmas 14 and 15 of [5], we upper-bound the term Under as follows:

Under =

X

i

X

vi2Vi

X

j

Di(vi) · ⇡ij(vi) ·
X

v�i2V�i

D�i(v�i) · vij · Ivij<(1+�)�ij(v�i)

=

X

i

X

vi2Vi

X

j

Di(vi) · ⇡ij(vi) ·
X

v�i2V�i

D�i(v�i) · vij

·(Ivij<�ij(v�i)
+ I�ij(v�i)vij<(1+�)�ij(v�i)

)


X

i

X

vi2Vi

X

j

Di(vi) · ⇡ij(vi) ·
X

v�i2V�i

D�i(v�i)

·(vij · Ivij<�ij(v�i)
+ (1 + �)�ij(v�i) · Ivij��ij(v�i)

)

 Rev(MIM (I)) + (1 + �)Rev(MIM (I))  2(1 + �)2Rev(MEV IM (I)).

The second inequality above is by Lemmas 14 and 15 of [5], which respectively upper-bound the
term Over and the term Under in the original setting. Indeed, we split our term Under into the
sum of the original terms Under and Over. Using the above equation, the approximation ratio to
OPT (I) will be 9(1 + ✏) eventually. To get the desired 8(1 + ✏)-approximation, we prove a variant
of Lemma 15 of [5], which directly upper-bounds our term Under as

Under  (1 + �)Rev(MIM (I))  (1 + �)2Rev(MEV IM (I)). (16)

The actual proof of this alternative lemma is tedious and does not provide new insights to our result,
thus has been omitted.

Next, we upper-bound the term Over:

Over =

X

i

X

vi2Vi

X

j

Di(vi) · ⇡ij(vi) ·
X

v�i2V�i

(1 + �)�ij(v�i)D�i(v�i)Ivij�(1+�)�ij(v�i)

 (1 + �)
X

i

X

vi2Vi

X

j

Di(vi) · ⇡ij(vi) ·
X

v�i2V�i

�ij(v�i)D�i(v�i)Ivij��ij(v�i)

 (1 + �)Rev(MIM (I))  (1 + �)2Rev(MEV IM (I)). (17)

The second inequality above is by Lemma 14 of [5].
Next, we upper-bound the term Tail, which is similar to the analysis of [5], but with the threshold
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price �ij(v�i) scaled up by a factor of (1 + �).

Tail =

X

i

X

v�i2V�i

D�i(v�i)
X

j

X

vij>(1+�)�ij(v�i)+ri(v�i)

Dij(vij) · (vij � (1 + �)�ij(v�i))

· Pr

vi,�j⇠Di,�j

[9k 6= j, vik � (1 + �)�ik(v�i) � vij � (1 + �)�ij(v�i)]


X

i

X

v�i2V�i

D�i(v�i)
X

j

X

vij>(1+�)�ij(v�i)+ri(v�i)

Dij(vij) · (vij � (1 + �)�ij(v�i))

· Pr

vi,�j⇠Di,�j

[9k 6= j, vik � �ik(v�i) � vij � (1 + �)�ij(v�i)]


X

i

X

v�i2V�i

D�i(v�i)
X

j

X

vij>(1+�)�ij(v�i)+ri(v�i)

Dij(vij) · (vij � (1 + �)�ij(v�i))

·
mX

k=1

Pr

vik⇠Dik

[vik � vij � (1 + �)�ij(v�i) + �ik(v�i)]


X

i

X

v�i2V�i

D�i(v�i)
X

j

X

vij>(1+�)�ij(v�i)+ri(v�i)

Dij(vij) ·
mX

k=1

(vij � (1 + �)�ij(v�i) + �ik(v�i))

· Pr

vik⇠Dik

[vik � vij � (1 + �)�ij(v�i) + �ik(v�i)]


X

i

X

v�i2V�i

D�i(v�i)
X

j

X

vij>(1+�)�ij(v�i)+ri(v�i)

Dij(vij)
mX

k=1

rik(v�i)

=

X

i

X

v�i2V�i

D�i(v�i)
X

j

ri(v�i)
X

vij>(1+�)�ij(v�i)+ri(v�i)

Dij(vij)


X

i

X

v�i2V�i

D�i(v�i)
X

j

((1 + �)�ij(v�i) + ri(v�i)) Pr

vij⇠Dij

[vij > (1 + �)�ij(v�i) + ri(v�i)]


X

i

X

v�i2V�i

D�i(v�i)
X

j

rij(v�i) =
X

i

X

v�i2V�i

D�i(v�i)ri(v�i) =
X

i

ri

= r  Rev(MIM (I))  (1 + �)Rev(MEV IM (I)). (18)

The second inequality above is by union bound. The fourth and sixth inequalities use twice the
definition of rij(v�i), which sets the optimal price to maximize the expected revenue generated by
selling item j to i. The second equality is by the definition of ri(v�i).

Finally, we upper-bound the term Core. To do so, below we rewrite Core into a different form.
Similar to [5], arbitrarily fixing v�i and letting vij ⇠ Dij , define the following two new random
variables, which again scale the threshold price �ij(v�i) up by a factor of (1 + �):

bij(v�i) = (vij � (1 + �)�ij(v�i))Ivij�(1+�)�ij(v�i)
,

and
cij(v�i) = bij(v�i)Ibij(v�i)ri(v�i)

.

Therefore, we have
Core =

X

i

X

v�i2V�i

D�i(v�i)
X

j

Evij⇠Dij [cij(v�i)].

Letting ei(v�i) =
P

j Evij⇠Dij [cij(v�i)] � 2ri(v�i), following the proof of Lemma 12 in [5], we still
have

Pr[

X

j

bij(v�i) � ei(v�i)] �
1

2

.
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In the following, we use the revenue of mechanisms MEV BV CG and MEV IM to bound the Core.
To do so, first note that by the construction of mechanism MEV BV CG,

Rev(MEV BV CG(I)) = Rev(MBV CG(I;D0
)).

Let V 0
ij be the support of D0

ij , V 0
i = ⇥j2MV 0

ij , V 0
= ⇥i2NV 0

i . As before, given vi ⇠ Di, denote by
v0i 2 V 0

i the value vector obtained by rounding vi down to the support of D0
i. That is, each v0ij is

the largest value in V 0
ij that is less than or equal to vij . Then,

Rev(MBV CG(I;D0
)) �

X

i

Ev�i⇠D�iEvi⇠DiRev(MBV CG(v
0
i, v�i;D0

))

=

X

i

Ev�i⇠D�iEv0i⇠D0
i
Rev(MBV CG(v

0
i, v�i;D0

)).

The inequality is because each player i can potentially buy item j only when j is in his winning set
(i.e., he is the highest bidder for j), and i’s winning set under v0i is a subset of his wining set under
vi. Moreover, the entry fee of i is the same under both (vi, v�i) and (v0i, v�i), as it only depends on
D0

i and v�i. Thus the revenue inside the expectation does not increase when vi is replaced by v0i.
The equality is again because drawing vi from Di and then rounding down to v0i is equivalent to
drawing v0i from D0

i directly.
Next, we lower-bound

P
i Ev�i⇠D�iEv0i⇠D0

i
Rev(MBV CG(v0i, v�i;D0

)). As before, arbitrarily fixing
v�i and letting v0ij ⇠ D0

ij , define

b0ij(v�i) = (v0ij � �ij(v�i))Iv0ij��ij(v�i)
.

Note that b0ij(v�i) is a random variable that represents player i’s utility in the second price mecha-
nism on item j with value v0ij ⇠ D0

ij , when the other players’ bids are v�i,j . Also note that MBV CG

uses the optimal entry fee for each i with respect to v�i and D0, which generates expected revenue
from i (over D0

i) greater than or equal to that by using the following entry fee,

e0i(v�i) =
ei(v�i)

1 + �
.

Now we show player i accepts the entry fee e0i(v�i) with probability at least 1

2

. Indeed, for any vi
and the corresponding v0i,

X

j

b0ij(v�i) =

X

j

(v0ij � �ij(v�i))Iv0ij��ij(v�i)
�

X

j

(

vij
1 + �

� �ij(v�i))I vij
1+�

��ij(v�i)

=

1

1 + �

X

j

(vij � (1 + �)�ij(v�i))Ivij�(1+�)�ij(v�i)
=

1

1 + �

X

j

bij(v�i).

The inequality is because v0ij �
vij
1+� , and because vij

1+� � �ij(v�i) implies v0ij � �ij(v�i). Therefore

Pr

v0i⇠D0
i

[

X

j

b0ij(v�i) � e0i(v�i)] � Pr

vi⇠Di

[

1

1 + �

X

j

bij(v�i) �
ei(v�i)

1 + �
] = Pr

vi⇠Di

[

X

j

bij(v�i) � ei(v�i)] �
1

2

,
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as desired. Thus we have

Rev(MEV BV CG(I)) �
X

i

Ev�i⇠D�iEv0i⇠D0
i
Rev(MBV CG(v

0
i, v�i;D0

))

� 1

2

X

i

X

v�i2V�i

D�i(v�i) ·
ei(v�i)

1 + �

=

1

2(1 + �)

X

i

X

v�i2V�i

D�i(v�i)

0

@
X

j

Evij⇠Dij [cij(v�i)]� 2ri(v�i)

1

A

=

1

2(1 + �)
Core � r

1 + �
.

That is,

Core  2(1 + �)Rev(MEV BV CG(I)) + 2r  2(1 + �) [Rev(MEV BV CG(I)) +Rev(MEV IM (I))] .(19)

Combining Inequalities 1, 15, 16, 17, 18 and 19,

OPT (I)  (1 + �)2 (2Rev(MEV BV CG(I)) + 6Rev(MEV IM (I)))
= (1 + ✏) (2Rev(MEV BV CG(I)) + 6Rev(MEV IM (I))) .

Accordingly, by running mechanism MEV BV CG with probability 1

4

and mechanism MEV IM with
probability 3

4

, the expected revenue of mechanism MEV A is

Rev(MEV A(I)) �
1

8(1 + ✏)
OPT (I).

This finishes the proof of Theorem 4.

C Missing Proofs for Section 5

C.1 Single-Item Auctions

Claim 1 (restated). M⇤ is DSIC.

Proof. Because MMRS is DSIC, each xi is monotone in vi. Although vi is a random variable
given v0i, it is easy to see that for any two different values v0i 2 V 0

i and v̂0i 2 V 0
i , the corresponding

resampled values vi and v̂i are such that v0i < v̂0i implies vi  v̂i. Thus xi is monotone in v0i as well.
Moreover, let ✓i be player i’s threshold payment in MMRS given v�i and D. If v0i > ✓i then vi > ✓i,
thus player i gets the item at price pi = ✓i. If v0i < ✓i then player i does not get the item and pi = 0,
no matter whether vi < ✓i or not. Accordingly, ✓i is also player i’s threshold payment in M⇤ under
v�i and D0. Since v�i does not depend on v0i, M⇤ is DSIC as desired.

Claim 2 (restated). Prvi⇠Di [vi � pi(v�i;D)|qi(vi) > ✏
1

]  (1 + �) Prvi⇠Di [v
�
i � pi(v�i;D)].

Proof. By definition, qi(vi) > ✏
1

implies vi  v0i;k, where v0i;k is the largest value in V 0
i , the support

of distribution D0
i. Note that v�i  v0i;k for any vi. If pi(v�i;D) > v0i;k, then both probabilities are 0

and the inequality holds.
Below we consider the case pi(v�i;D)  v0i;k. Let v0i;�1

= �1 and l 2 {0, 1, . . . , k} be such that
v0i;l � pi(v�i;D) and v0i;l�1

< pi(v�i;D). We have
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Pr

vi⇠Di

[vi � pi(v�i;D)|qi(vi) > ✏
1

]

 Pr

vi⇠Di

[v+i � pi(v�i;D)|qi(vi) > ✏
1

]

= Pr

vi⇠Di

[v+i � v0i;l|qi(vi) > ✏
1

]

= Pr

vi⇠Di

[v�i � v0i;l�1

|qi(vi) > ✏
1

]

= Pr

vi⇠Di

[v�i � v0i;max{0,l�1}|qi(vi) > ✏
1

]

=

Prvi⇠Di [v
�
i � v0i;max{0,l�1} and qi(vi) > ✏

1

]

Prvi⇠Di [qi(vi) > ✏
1

]

=

Prvi⇠Di [v
�
i � v0i;max{0,l�1}]� Prvi⇠Di [v

�
i � v0i;max{0,l�1} and qi(vi)  ✏

1

]

Prvi⇠Di [qi(vi) > ✏
1

]

=

Prvi⇠Di [v
�
i � v0i;max{0,l�1}]� Prvi⇠Di [qi(vi)  ✏

1

]

Prvi⇠Di [qi(vi) > ✏
1

]

 Pr

vi⇠Di

[v�i � v0i;max{0,l�1}]

= Pr

v0i⇠D0
i

[v0i � v0i;max{0,l�1}] = q
max{0,l�1}  (1 + �)ql

= (1 + �) Pr

v0i⇠D0
i

[v0i � v0i;l] = (1 + �) Pr

v0i⇠D0
i

[v0i � pi(v�i;D)]

= (1 + �) Pr

vi⇠Di

[v�i � pi(v�i;D)],

as desired. Indeed, the first inequality is because v+i > vi, and the first equality is because v+i 2
V 0
i [{+1} and thus v+i � pi(v�i;D) if and only if v+i � v0i;l. Similarly, the second equality is because

(v�i , v
+

i ) and (v0i;l�1

, v0i;l) are two pairs of consecutive values in V 0
i [ {�1,+1}, thus v+i � v0i;l if

and only if v�i � v0i;l�1

. The third equality is because v�i � v0i;0 always. The sixth equality is
because qi(vi)  ✏

1

implies vi � v0i;k � v0i;l, thus v�i � v0i;max{0,l�1}. The seventh equality is by the
definition of the round-down scheme. The following two equalities and the inequality are by the
construction of D0

i and the definition of the quantile vector q. Indeed, (1 + �)q
0

= 1 + � > 1 = q
0

,
(1+ �)q

1

= ✏
1

(1+ �)k � ✏
1

(1+ �)
log1+�

1
✏1

= ✏
1

· 1

✏1
= 1 = q

0

, and (1+ �)ql = ql�1

for any l � 2. The
second-last equality is because v0i 2 V 0

i , thus v0i � v0i;l if and only if v0i � pi(v�i;D). Finally, the last
equality is again by the definition of the round-down scheme.

Claim 3 (restated). Rev(M⇤
(I 0

)) � 1

1+✏OPT (I).

Proof. Combining Equation 5 and Claim 2, we have

Rev(M⇤
(I 0

)) � 1

1 + �

X

i

E
v�i⇠D�i

pi(v�i;D) · Pr

vi⇠Di

[vi � pi(v�i;D)|qi(vi) > ✏
1

].
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Accordingly,

Rev(M⇤
(I 0

)) � 1

1 + �

X

i

E
v�i⇠D�i

pi(v�i;D) · Pr

vi⇠Di

[vi � pi(v�i;D)|qi(vi) > ✏
1

]

� 1

1 + �

X

i

E
v�i⇠D�i

pi(v�i;D) · Pr

vi⇠Di

[qi(vi) > ✏
1

and vi � pi(v�i;D)]

=

1

1 + �

X

i

E
v�i⇠D�i

E
vi⇠Di

pi(v�i;D) · Iqi(vi)>✏1 · Ivi�pi(v�i;D)

=

1

1 + �
E

v⇠D

X

i

pi(v�i;D) · Iqi(vi)>✏1 · Ivi�pi(v�i;D)

� 1

1 + �
E

v⇠D
I8i,qi(vi)>✏1 ·

X

i

pi(v�i;D)Ivi�pi(v�i;D)

=

1

1 + �
E

v⇠D
I8i,qi(vi)>✏1 ·RevOPT (v; I)

� 1� �
1

1 + �
OPT (I). (20)

Here the second last equality holds by the definition of pi(v�i;D) and RevOPT (v; I), and last
inequality holds by the Small-Tail Assumption 2. Since � =

✏
3

and �
1

=

2✏
3(1+✏) , we have

1� �
1

1 + �
=

1

1 + ✏
,

thus Claim 3 holds.

C.2 Additive Auctions

Before proving Theorem 7, we first analyze mechanism MEQBV CG, and we have the following.

Lemma 4. 8✏ > 0, for any additive Bayesian instance I = (N,M,D) satisfying Small-Tail As-
sumption 1, MEQBV CG is DSIC, has query complexity O(�m2n log

1+

✏
5
h( ✏

10(1+✏))), and

Rev(MEQBV CG(I)) �
1

1 +

✏
5

✓
Rev(MBV CG(I))�

✏

10(1 + ✏)
OPT (I)

◆
.

Proof. First, mechanism MEQBV CG is DSIC because MBV CG is DSIC. The query complexity is
also immediate.

We now focus on the revenue of this mechanism. We explicitly write MBV CG(I;D0
) to emphasize

the fact that the seller runs mechanism MBV CG on the true valuation profile v ⇠ D, but uses D0 to
compute the entry fees ei. Given a player i and a valuation profile v, pi(vi,Di, v�i) is the price for i
under Di: that is, pi(vi,Di, v�i) = IP

j:vij��ij
(vij��ij)�e(Di,v�i)

(e(Di, v�i) +
P

j �ijIvij��ij
), where

we omit v�i in �ij(v�i) when v�i is clear from the context. 2 The price pi(vi,D0
i, v�i) is similarly

defined. By the definition of the mechanism, we have

Rev(MEQBV CG(I)) = Rev(MBV CG(I;D0
)) =

X

i

E
v�i⇠D�i

E
vi⇠Di

pi(vi,D0
i, v�i). (21)

2
If there are ties in the players’ values, then we distinguish between �+

ij and ��
ij , depending on the identity of the

player with the highest bid for j in N \ {i}.
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Next, let V 0
ij be the support of D0

ij , V 0
i = ⇥j2MV 0

ij , round vi down to the closest valuation
v0i in V 0

i and compare the two valuation profiles (v0i, v�i) and (vi, v�i). By definition, v0ij � �ij
implies vij � �ij . Moreover, the entry fee of i is the same under both valuation profiles, as it
only depends on D0

i and v�i. Similarly, the reserve price �ij is the same for any item j. Thus
we have e(D0

i, v�i) +
P

j �ijIvij��ij
� e(D0

i, v�i) +
P

j �ijIv0ij��ij
and IP

j:vij��ij
(vij��ij)�e(Di,v�i)

�
IP

j:vij��ij
(v0ij��ij)�e(D0

i,v�i)
. Therefore

E
v�i⇠D�i

E
vi⇠Di

pi(vi,D0
i, v�i) � E

v�i⇠D�i

E
vi⇠Di

pi(v
0
i,D0

i, v�i) = E
v�i⇠D�i

E
v0i⇠D0

i

pi(v
0
i,D0

i, v�i), (22)

where the equality is again because drawing vi from Di and then rounding down to v0i is equivalent
to drawing v0i from D0

i directly.
In mechanism MBV CG, given v�i and D0

i, e(D0
i, v�i) is the optimal entry fee for maximizing the

expected revenue generated from i, where the expectation is taken over D0
i. Accordingly,

E
v0i⇠D0

i

pi(v
0
i,D0

i, v�i) � E
v0i⇠D0

i

pi(v
0
i,Di, v�i). (23)

Combining Equations 21, 22 and 23, we have

Rev(MEQBV CG(I)) �
X

i

E
v�i⇠D�i

E
v0i⇠D0

i

pi(v
0
i,Di, v�i). (24)

Thus we will use
P
i

E
v�i⇠D�i

E
v0i⇠D0

i

pi(v0i,Di, v�i) to upper-bound Rev(MBV CG(I)).

To do so, first, for any player i, item j and value vij , if vij < v0ij;k where v0ij;k is the largest
value in V 0

ij , then denote by vij the smallest value in V 0
ij that is strictly larger than vij ; otherwise,

let vij = vij . Moreover, denote by vij the largest value in V 0
ij that is weakly smaller than vij . The

valuation vi and vi are defined correspondingly given vi. Then We have

Rev(MBV CG(I)) =
X

i

E
v�i⇠D�i

E
vi⇠Di

pi(vi,Di, v�i)

=

X

i

E
v�i⇠D�i

E
vi⇠Di

IP
j:vij��ij

(vij��ij)�e(Di,v�i)

0

@e(Di, v�i) +
X

j

�ijIvij��ij

1

A

=

X

i

E
v�i⇠D�i

E
vi⇠Di

I8j,qij(vij)>✏1I
P

j:vij��ij
(vij��ij)�e(Di,v�i)

0

@e(Di, v�i) +
X

j

�ijIvij��ij

1

A

+

X

i

E
v�i⇠D�i

E
vi⇠Di

I9j,qij(vij)✏1I
P

j:vij��ij
(vij��ij)�e(Di,v�i)

0

@e(Di, v�i) +
X

j

�ijIvij��ij

1

A . (25)

Below we upper-bound the last two lines in Equation 25 separately. For the first part, we have

X

i

E
v�i⇠D�i

E
vi⇠Di

I8j,qij(vij)>✏1I
P

j:vij��ij
(vij��ij)�e(Di,v�i)

0

@e(Di, v�i) +
X

j

�ijIvij��ij

1

A


X

i

E
v�i⇠D�i

E
vi⇠Di

I8j,qij(vij)>✏1I
P

j:vij��ij
(vij��ij)�e(Di,v�i)

0

@e(Di, v�i) +
X

j

�ijIvij��ij

1

A

=

X

i

E
v�i⇠D�i

X

ui2V 0
i :
P

j:uij��ij
(uij��ij)�e(Di,v�i)

Pr

vi⇠Di

[vi = ui]

0

@e(Di, v�i) +
X

j

�ijIuij��ij

1

A . (26)
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The inequality above is because vij  vij for each player i and item j, which implies
IP

j:vij��ij
(vij��ij)�e(Di,v�i)

 IP
j:vij��ij

(vij��ij)�e(Di,v�i)
and

P
j �ijIvij��ij


P

j �ijIvij��ij
.

Next, by the definition of the quantile vector q, for any uij 2 V 0
ij we have

Pr

vij⇠Dij

[vij = uij ]  (1 + �) Pr

vij⇠Dij

[vij = uij ].

Indeed, when uij = v0ij;0, Pr[vij < uij ] = 0 < (1 + �)(1 � ✏
1

(1 + �)k�1

) = (1 + �)(q
0

� q
1

) =

(1 + �) Pr[vij 2 [v0ij;0, v
0
ij;1)]. When uij = v0ij;l with 0 < l < k, Pr(vij 2 [v0ij;l�1

, v0ij;l)) = ql�1

� ql 
(1+ �)ql� ql = �ql = (1+ �)�ql+1

= (1+ �)((1+ �)ql+1

� ql+1

) = (1+ �)(ql� ql+1

) = (1+ �) Pr[vij 2
[v0ij;l, v

0
ij;l+1

)]. And when uij = v0ij;k, Pr[vij 2 [v0ij;k�1

, v0ij;k]] = qk�1

�qk = �✏
1

< ✏
1

= Pr[vij � v0ij;k].
Since all distributions are independent, for any ui 2 V 0

i we have

Pr

vi⇠Di

[vi = ui]  (1 + �)m Pr

vi⇠Di

[vi = ui]. (27)

Combining Equations 26 and 27, we have

X

i

E
v�i⇠D�i

E
vi⇠Di

I8j,qij(vij)>✏1I
P

j:vij��ij
(vij��ij)�e(Di,v�i)

0

@e(Di, v�i) +
X

j

�ijIvij��ij

1

A


X

i

E
v�i⇠D�i

X

ui2V 0
i :

P
j:uij��ij

(uij��ij)�e(Di,v�i)

(1 + �)m · Pr

vi⇠Di

[vi = ui] ·

0

@e(Di, v�i) +
X

j

�ijIuij��ij

1

A

= (1 + �)m
X

i

E
v�i⇠D�i

E
v0i⇠D0

i

IP
j:v0

ij
��ij

(v0ij��ij)�e(Di,v�i)

0

@e(Di, v�i) +
X

j

�ijIv0ij��ij

1

A

= (1 + �)m
X

i

E
v�i⇠D�i

E
v0i⇠D0

i

pi(v
0
i,Di, v�i)  (1 + �)mRev(MECBV CG(

ˆI)). (28)

The first equality above holds because drawing vi from Di and rounding down to the support of D0
i

is equivalent to drawing v0i from D0
i. The second equality is by the definition of pi(v0i,Di, v�i), and

the last inequality holds by Equation 24.
By Equations 25 and 28, we have

Rev(MBV CG(I))
 (1 + �)mRev(MEQBV CG(I))

+

X

i

E
v�i⇠D�i

E
vi⇠Di

I9j,qij(vij)✏1I
P

j:vij��ij
(vij��ij)�e(Di,v�i)

0

@e(Di, v�i) +
X

j

�ijIvij��ij

1

A .(29)

31



For the last line of Equation 29, we have

X

i

E
v�i⇠D�i

E
vi⇠Di

I9j,qij(vij)✏1I
P

j:vij��ij
(vij��ij)�e(Di,v�i)

0

@e(Di, v�i) +
X

j

�ijIvij��ij

1

A

= E
v⇠D

X

i

I9j,qij(vij)✏1I
P

j:vij��ij
(vij��ij)�e(Di,v�i)

0

@e(Di, v�i) +
X

j

�ijIvij��ij

1

A

 E
v⇠D

I9i,j,qij(vij)✏1

X

i

IP
j:vij��ij

(vij��ij)�e(Di,v�i)

0

@e(Di, v�i) +
X

j

�ijIvij��ij

1

A

= E
v⇠D

I9i,j,qij(vij)✏1Rev(MBV CG(v; I)) 
✏

10(1 + ✏)
OPT (I). (30)

The first inequality above is because, for each player i and valuation profile v, I9j,qij(vij)✏1 
I9i,j,qij(vij)✏1 . The second inequality is by the Small-Tail Assumption 1.

Combining Equations 29 and 30, we have

Rev(MBV CG(I))  (1 + �)mRev(MEQBV CG(I)) +
✏

10(1 + ✏)
OPT (I).

By the construction of Mechanism 9, (1 + �)m = 1 +

✏
5

. Therefore Lemma 4 holds.

Theorem 7 (restated). 8✏ > 0, any additive Bayesian instance I = (N,M,D) satisfying Small-Tail
Assumption 1, MEQA is DSIC, has query complexity O(�m2n log

1+

✏
5
h( ✏

10(1+✏))), and

Rev(MEQA(I)) �
1

8(1 + ✏)
OPT (I).

Proof. First, as both MEQBV CG and MEQIM are DSIC, MEQA is DSIC. Second, note that MEQA

runs both mechanisms with � = (1 +

✏
5

)

1/m � 1 and ✏
1

= h( ✏
10(1+✏)). To ease the analysis, when

running mechanism MEQIM , let � =

✏
15

and ✏
1

= h( 2✏
3(5+✏)): that is, set ✏0 = ✏

5

and run mechanism
MEQM with parameter ✏0 for each item. By Theorem 5, with O(�mn log

1+

✏
15
h( 2✏

3(5+✏))) queries,

Rev(MEQIM (I)) � 1

1 +

✏
5

Rev(MIM (I)).

By Lemma 4, with O(�m2n log

1+

✏
5
h( ✏

10(1+✏))) queries,

Rev(MEQBV CG(I)) �
1

1 +

✏
5

✓
Rev(MBV CG(I))�

✏

10(1 + ✏)
OPT (I)

◆
.

Note that the total query complexity is still O(�m2n log

1+

✏
5
h( ✏

10(1+✏))).
Let mechanism MEQA run MEQBV CG with probability 1

4

and MEQIM with probability 3

4

. We
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have

Rev(MEQA(I)) =
1

4

Rev(MEQBV CG(I)) +
3

4

Rev(MEQIM (I))

� 1

4(1 +

✏
5

)

✓
Rev(MBV CG(I))�

✏

10(1 + ✏)
OPT (I)

◆
+

3

4(1 +

✏
5

)

Rev(MIM (I))

� 1

1 +

✏
5

✓
1

4

Rev(MBV CG(I)) +
3

4

Rev(MIM (I))� ✏

10(1 + ✏)
OPT (I)

◆

� 1

1 +

✏
5

✓
1

8

OPT (I)� ✏

10(1 + ✏)
OPT (I)

◆
=

1

8(1 + ✏)
OPT (I).

The last inequality above holds because 2MBV CG(I) + 6MIM (I) � OPT (I) [5]. Thus Theo-
rem 7 holds.

C.3 The Proof for Corollary 1

Corollary 1 (restated). For any ✏ > 0, H > 1, and prior distribution D with each Dij bounded
within [1, H], there exist DSIC mechanisms that use O(mn log

1+✏
nmH(1+✏)

✏ ) quantile queries for
single-item auctions and unit-demand auctions, and use O(m2n log

1+✏
nmH(1+✏)

✏ ) quantile queries
for additive auctions, whose approximation ratios for OPT are respectively 1 + ✏, 24(1 + ✏) and
8(1 + ✏).

Proof. We only need to show that the Small-Tail Assumptions 1 and 2 are naturally satisfied when
the distributions have bounded supports. For example, consider additive auctions where all values
are in [1, H], as considered in [23, 11]. Then mH and 1 are straightforward upper- and lower-
bounds for OPT (I), respectively. Moreover, by individual rationality, mH is an upper-bound for
the revenue generated under any valuation profiles. Given �

1

, let ✏
1

= h(�
1

) =

�1
m2nH and denote by

E the event that there exist at least one player i and one item j with qij(vij)  ✏
1

. By the union
bound, Pr[E]  mn✏

1

= mn · �1
m2nH =

�1
mH . Therefore

E
v⇠D

I9i,j,qij(vij)✏1Rev(M(v; I))  mH · Pr[E]  �
1

 �
1

OPT (I).

Combining this observation with Theorems 5, 6 and 7, we have Corollary 1 when the values are all
bounded in [1, H].

D Missing Proofs for Section 6

Theorem 8 (restated). 8✏ > 0 and � 2 (0, 1), for any Bayesian instance I = (N,M,D),

• for single-item auctions satisfying the Small-Tail Assumption 2, with ˜O(h�2

(

2✏
3(1+✏)) · (

✏
1+✏)

�2

)

samples, mechanism MSM achieves revenue at least 1

1+✏OPT (I) with probability at least 1��;

• for unit-demand auctions satisfying the Small-Tail Assumption 2, with ˜O(h�2

(

2✏
3(1+✏))·(

✏
1+✏)

�2

)

samples, mechanism MSM achieves revenue at least 1

24(1+✏)OPT with probability at least 1��;

• for additive auctions satisfying the Small-Tail Assumption 1, with ˜O(h�2

(

✏
10(1+✏))(

1

2

� 1

1+(1+

✏
5 )

1/m ))

�2

)

samples, mechanism MSM achieves revenue at least 1

8(1+✏)OPT with probability at least 1��.
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Proof. After constructing the distributions, we simply run the existing DSIC mechanisms as a
Blackbox, and if the constructed distribution satisfies the property that for any quantile ql,

qij(v
t·ql+1
ij ) � 1

1 +

✏
3

⇣
qij(v

t·ql
ij )

⌘
. (31)

all our query complexity results for single-item and unit-demand auctions directly apply here.
Since here for sampling mechanism, we slice the quantile interval uniformly, in the ideal case, the

selected sampled values correspond to the desired quantiles and Dij(v
t·ql
ij ) = Dij(v

t·ql+1
ij ). However,

since these samples are random, we may not obtain the ideal case. In fact, given parameter d =

12+3✏
✏ , if for any quantile ql,

ql �
ql
d

 qij(v
t·ql
ij )  ql +

ql
d
, (32)

then
qij(v

t·ql+1
ij )

qij(v
t·ql
ij )

�
ql+1

(1� 1

d)

ql(1 +
1

d)
�

1

1+

✏
6
(1� 1

d)

1 +

1

d

=

1

1 +

✏
3

,

for any ✏ > 0, that is, Equantion 31 holds. In the following, we show how many samples are enough
to obtain Inequality 32.

First, we bound the probability that vt·qlij locates in the quantile interval [ql � ql
d , ql +

ql
d ]. Let

Eleft
ij,l be the event that vt·qlij locates in the quantile interval [0, ql � ql

d ], and Eright
ij,l be the event that

vt·qlij locates in the quantile interval [ql + ql
d , 1]. Then

Pr[Eleft
ij,l ] =

t�t·qlX

s=0

✓
t

s

◆⇣
ql �

ql
d

⌘s ⇣
1� ql +

ql
d

⌘t�s
,

and

Pr[Eright
ij,l ] =

t·qlX

s=0

✓
t

s

◆⇣
1� ql �

ql
d

⌘s ⇣
ql +

ql
d

⌘t�s
.

By Chernoff’s inequality and 8i, j, l, letting Pr[Eleft
ij,l ] and Pr[Eright

ij,l ] be no more than �
2mn(k+1)

,
t = ˜O((

✏1
d )

�2

) =

˜O((

✏·✏1
(1+✏))

�2

). That is with ˜O(h�2

(

2✏
3(1+✏)) · (

✏
1+✏)

�2

) samples, the probability that
vt·qlij does not locate in the quantile interval [ql � ql

d , ql +
ql
d ] is less than �

mn(k+1)

. By union bound,
there exists one vt·qlij for all i 2 [n], j 2 [m], l 2 [k + 1] does not locate in the quantile interval
[ql � ql

d , ql +
ql
d ] is less than �. Then with probability 1� �, Inequality 32 holds.

For additive auctions, if the constructed distribution satisfies the property that for any quan-
tile ql,

qij(v
t·ql
ij )� qij(v

t·ql+1
ij ) � 1

(1 +

✏
5

)

1/m

⇣
qij(v

t·ql+1
ij )� qij(v

t·ql+2
ij )

⌘
, (33)

all our query complexity results for additive auctions directly apply here. In fact, if for any quan-
tile ql,

ql � ✏
1

(

1

2

� 1

1 + (1 +

✏
5

)

1/m
)  qij(v

t·ql
ij )  ql + ✏

1

(

1

2

� 1

1 + (1 +

✏
5

)

1/m
),

then,
qij(v

t·ql
ij )� qij(v

t·ql+1
ij )

qij(v
t·ql+q

ij )� qij(v
t·ql+2
ij )

�
✏
1

� ✏
1

(1� 2

1+(1+

✏
5 )

1/m )

✏
1

+ ✏
1

(1� 2

1+(1+

✏
5 )

1/m )

=

1

(1 +

✏
5

)

1/m
,

Using the same technique of applying the Chernoff’s inequality, with ˜O(h�2

(

✏
10(1+✏))(

1

2

� 1

1+(1+

✏
5 )

1/m ))

�2

)

samples, Equation 33 holds with probability 1� �. Thus Theorem 8 holds.
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E Missing Proofs for Section 7

E.1 Lower Bound

We only prove Theorem 9 for the single-player case, as in the following lemma. The lower bound for
general multi-player single-item auctions can be proved using the same technique as in Theorem 1,
thus the full proof has been omitted.

Lemma 5. For any constant ✏ 2 (0, 1

64

), there exists a constant C such that, for any DSIC Bayesian
mechanism M making less than C/✏ non-adaptive value and quantile queries to the oracle, there
exists a single-player single-item Bayesian auction instance I = (N,M,D) where D is regular, such
that Rev(M(I)) < OPT (I)

1+✏ .

Proof. Since the distributions are unbounded, we can always construct the distributions such that for
any finite number of value queries, the responses for the value queries have almost none contribution
to the optimal revenue. Thus we only need to focus on the lower bound for quantile queries.

Letting k , d 1

�✏e and C , 1�2�✏
2

. Here � is a constant to be determined later and �, ✏ satisfies
that k � 2. In our construction, we divide the quantile interval [0, 1] into k + 1 sub-intervals each,
with the right-end points defined as follows: from left to right, q

0

= 0, qt+1

= qt + �✏ for each
t 2 {0, . . . , k � 1}.

Accordingly, for any Bayesian mechanism M that makes less than C
✏ non-adaptive quantile

queries, there exists a quantile interval (qt, qt+1

) such that, qt+1

 1� 2�✏ and with probability at
least 1

2

, no quantile in (qt, qt+1

) is queried for D either. Indeed, if this is not the case, then with
probability at least 1

2

, all the quantile intervals except (1� 2�✏, 1� �✏) and (1� �✏, 1) are queried.
Since there are at least k � 2 quantile intervals, the expected total number of queries made by M
is at least k

2

� 1 � 1�2�✏
2�✏ =

C
✏ , a contradiction.

We now construct two different single-player single-item Bayesian instances

{Iz = (N,M,Dz)}z2{1,2},

where the distributions outside the quantile range (qt, qt+1

) are all the same. Thus with probability
at least 1

2

, mechanism M cannot distinguish the Iz’s from each other. We then show that when
this happens, mechanism M cannot be a (1 + 3✏)-approximation for all instances Iz.

Let R be a parameter that are large enough such that no value query will get any useful response.
Then the first distribution D

1

with value bounded within [0, R
qt
] is defined as follows, where F

1

(·) is
the cumulative probability function of D

1

.

F
1

(v) =

(
1� R

(1�qt+1)v+R , 0  v < R
qt
,

1, v =

R
qt
.

That is there is a probability mass qt
1��✏ at value R

qt
and within interval [0, R

qt
) it is a continuous

distribution. Then for any quantile in range (0, qt
1��✏ ], the oracle will response R

qt
. For quantile q in

range (

qt
1��✏ , 1], the oracle will response v(q) = R

1�qt+1
(

1

q � 1). Therefore the revenue function with
related to the quantile q is

R
1

(q) =

(
R

1�qt+1
(1� q), qt

1��✏ < q  1,
R

1��✏ , q =

qt
1��✏ .

The revenue curve R
1

(q) is illustrated figure 2.
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Figure 2: The revenue curve of D
1

.

The second distribution D
2

with value bounded within [0, R
qt
] is defined as follows, where F

2

(·)
is the cumulative probability function of D

2

. Let v⇤ =

R(2��✏)
2(1��✏)�(2��✏)(1�qt+1)

. Since qt+1

 1 � 2�✏,
v⇤ > 0 is well defined and it is easy to check v⇤ < R

qt
.

F
2

(v) =

8
><

>:

1� R
(1�qt+1)v+R , 0  v < v⇤,

1� R(1��✏)
(1+qt��✏)v�R , v⇤  v < R

qt
,

1, v =

R
qt
.

That is, there is a probability mass qt at value R
qt

and a two-step continuous distribution within
[qt, q⇤] and [q⇤, qt+1

]. Thus for any quantile in range (0, qt], the oracle will response R
qt

. It can be
calculated that the quantile of value v⇤ is q⇤ = 1� 2��✏

2(1��✏) · (1� qt+1

). Then for quantile q in range
(qt, q⇤], the oracle will response v(q) =

R
q (1 � qt

1+qt��✏) +
R

1+qt��✏ . For quantile q in range (q⇤, 1],
the oracle will response v(q) = R

1�qt+1
(

1

q � 1). Therefore the revenue function with related to the
quantile q is

R
2

(q) =

8
><

>:

R
1�qt+1

(1� q), q⇤ < q  1,
R

1+qt��✏(1 + q � �✏), q⇤  q < qt,

R, q = qt.

The revenue curve R
2

(q) is illustrated figure 3.
Indeed when the quantile query is from [0, qt][ [qt+1

, 1], the oracle’s answers for all distributions
are the same. Accordingly, with probability at least 1

2

, mechanism M cannot distinguish Dz’s from
each other, which means it cannot distinguish Iz’s from each other, as desired.

Since M is truthful, the allocation rule for the player must be monotone and he will pay the
threshold payment set by M, denoted by P . Let P ⇤

=

(4��✏)R
4(1��✏)�(4��✏)(1�qt+1)

. Here P may be
randomized. Recall that OPT (I

1

) =

R
1��✏ If with probability 1

2

setting the price P  P ⇤, then for
instance I

1

, we have

Rev(M(I
1

))  1

2

OPT (I
1

) +

1

2

(

3R

4(1� �✏)
+

R

4

)

=

7R

8(1� �✏)
+

R

8

=

R

1� �✏

✓
1� 1

8

�✏

◆
<

OPT (I
1

)

1 + 4✏
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Figure 3: The revenue curve of D
2

.

when � � 32. On the other hand, recall that OPT (I
2

) =

R
2(1��✏) +

R
2

=

(2��✏)R
2(1��✏) . If with probability

1

2

, the price P > P ⇤, for instance I
2

, we have

Rev(M(I
2

)) <
1

2

OPT (I
2

) +

(4� �✏)R

2(4� 2�✏)
=

(2� �✏)R

4(1� �✏)
+

(4� �✏)R

2(4� 2�✏)

=

(2� �✏)R

2(1� �✏)

✓
1

2

+

(4� �✏)(1� �✏)

2(2� �✏)2

◆
= OPT (I

2

)

✓
1� �✏

2(2� �✏)2

◆
<

OPT (I
2

)

1 + 4✏

when � � 32. Thus for any mechanism M with O(

1

✏ ) quantile queries, there exists z⇤ 2 {0, 1} such
that when ✏ < 1

64

and � = 32,

Rev(M(Iz⇤)) 
OPT (Iz⇤)

2

+

OPT (Iz⇤)
2(1 + 4✏)

<
OPT (Iz⇤)

1 + ✏
.

Therefore Lemma 5 holds.

E.2 Upper Bound

Mechanism 11 Efficient quantile Myerson mechanism for regular distributions, MEMR

1: Given ✏ > 0, run algorithm AQ with � =

✏
4

and ✏
1

=

✏2

256n for each player i’s distribution Di,
with the returned distribution denoted by D0

i. Let D0
= ⇥i2ND0

i.
2: Run MMRS with D0 and the players’ reported values, b = (bi)i2N , to get allocation x = (xi)i2N

and price profile p = (pi)i2N as the outcome.

Theorem 10. (restated) 8✏ 2 (0, 1), for any single-item instance I = (N,M,D) where D is regular,
mechanism MEMR is DSIC, has query complexity O(n log

1+✏
n
✏ ), and Rev(MEMR(I)) � OPT (I)

1+✏ .

Proof. Consider the quantile value q⇤ = ✏2

256n and v⇤i = F�1

i (1�q⇤). Let v̂i = max{v⇤i ,
16OPT (I)

✏ }, and
let ¯D

1

, . . . , ¯Dn be imaginary distributions obtained by truncating D
1

, . . . ,Dn at v̂i, i.e., a sample
v̄i from ¯Di is obtained by first sampling vi from Di. and then letting v̄i = min{vi, v̂i}. Let
¯I = (N,M, ¯D).
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Note that D0 is also a discretization distribution for ¯D, following the proof and notations of
Theorem 5, letting v�i be the value first sampled from ¯Di than rounding down to the support of D0,
we have MEMR is truthful and using the technique of Mechanism 7, we have

Rev(MEMR(I)) = Rev(MMRS(v,D0
)) � Rev(MMRS(v

0,D0
))

=

X

i

E
v̄�i⇠ ¯D�i

pi(v̄�i;
¯D) · Pr

v̄i⇠ ¯Di

[v�i � pi(v̄�i;
¯D)]

=

X

i

E
v̄�i⇠ ¯D�i

pi(v̄�i;
¯D) · Pr

v̄i⇠ ¯Di

[v�i � pi(v̄�i;
¯D)] · (I

v⇤i 
16OPT (I)

✏

+ I
v⇤i >

16OPT (I)
✏

). (34)

We bound the indicators separately.

X

i

E
v̄�i⇠ ¯D�i

pi(v̄�i;
¯D) · Pr

v̄i⇠ ¯Di

[v�i � pi(v̄�i;
¯D)] · I

v⇤i 
16OPT (I)

✏

=

X

i

E
v̄�i⇠ ¯D�i

pi(v̄�i;
¯D) · Pr

v̄i⇠ ¯Di

[v�i � pi(v̄�i;
¯D)] · I

v⇤i 
16OPT (I)

✏

· (Ipi(v̄�i;
¯D)<v⇤i

+ Ipi(v̄�i;
¯D)�v⇤i

)

�
X

i

E
v̄�i⇠ ¯D�i

[pi(v̄�i;
¯D) · 1

1 +

✏
4

· Pr

v̄i⇠ ¯Di

[v̄i � pi(v̄�i;
¯D)] · I

v⇤i 
16OPT (I)

✏

· Ipi(v̄�i;
¯D)<v⇤i

+(pi(v̄�i;
¯D) · Pr

v̄i⇠ ¯Di

[v̄i � pi(v̄�i;
¯D)]� 16OPT (I)

✏
· ✏2

256n
) · I

v⇤i 
16OPT (I)

✏

· Ipi(v̄�i;
¯D)�v⇤i

]

� 1

1 +

✏
4

X

i

E
v̄�i⇠ ¯D�i

pi(v̄�i;
¯D) · Pr

v̄i⇠ ¯Di

[v̄i � pi(v̄�i;
¯D)] · I

v⇤i 
OPT (I)

16✏
� ✏

16

·OPT (I). (35)

The first inequality here holds because for price pi(v̄�i;
¯D) < v⇤i , we have

Pr

v̄i⇠ ¯Di

[v�i � pi(v̄�i;
¯D)] � 1

1 +

✏
4

Pr

v̄i⇠ ¯Di

[v̄i � pi(v̄�i;
¯D)]

due to the structure of the quantile queries for D0. For price pi(v̄�i;
¯D) � v⇤i , when v⇤i  16OPT (I)

✏ ,
by the regularity of Di, the optimal reserve corresponds to the quantile from (

✏2

256n , 1]. Thus we
have

pi(v̄�i;
¯D) · Pr

v̄i⇠ ¯Di

[v�i � pi(v̄�i;
¯D)] � 0

� pi(v̄�i;
¯D) · Pr

v̄i⇠ ¯Di

[v̄i � pi(v̄�i;
¯D)]� v⇤i · Pr

v̄i⇠ ¯Di

[v̄i � v⇤i ]

� pi(v̄�i;
¯D) · Pr

v̄i⇠ ¯Di

[v̄i � pi(v̄�i;
¯D)]� 16OPT (I)

✏
· ✏2

256n

since the expected revenue is non-decreasing for quantile range [0, ✏2

256n ]. Thus Equation 35 holds.
Then for the second indicator for Equation 34, we have

X

i

E
v̄�i⇠ ¯D�i

pi(v̄�i;
¯D) · Pr

v̄i⇠ ¯Di

[v�i � pi(v̄�i;
¯D)] · I

v⇤i >
16OPT (I)

✏

� 1

1 +

✏
4

X

i

E
v̄�i⇠ ¯D�i

pi(v̄�i;
¯D) · Pr

v̄i⇠ ¯Di

[v̄i � pi(v̄�i;
¯D)] · I

v⇤i >
16OPT (I)

✏

(36)

38



also by the construction the quantile queries for D0. Combining Equation 34, 35 and 36, we have

Rev(MEMR(I))

� 1

1 +

✏
4

X

i

E
v̄�i⇠ ¯D�i

pi(v̄�i;
¯D) · Pr

v̄i⇠ ¯Di

[v̄i � pi(v̄�i;
¯D)] · I

v⇤i 
16OPT (I)

✏

� ✏

16

·OPT (I)

+

1

1 +

✏
4

X

i

E
v̄�i⇠ ¯D�i

pi(v̄�i;
¯D) · Pr

v̄i⇠ ¯Di

[v̄i � pi(v̄�i;
¯D)] · I

v⇤i >
16OPT (I)

✏

=

1

1 +

✏
4

Rev(MMRS(v̄, ¯D))� ✏

16

·OPT (I)

By Lemma 2 of [14], for 0  ✏  1, Rev(MMRS(v̄, ¯D)) = OPT (¯I) � (1� ✏
4

)OPT (I). Thus we
have

Rev(MEMR(I))

� 1

1 +

✏
4

(1� ✏

4

)OPT (I)� ✏

16

·OPT (I) � 1

1 + ✏
OPT (I).

Thus Theorem 10 holds.
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